S8910U Universal Hot Surface Ignition Module

SUPER TRADELINE®

Installation Instructions for the Trained Service Technician.

APPLICATION

The SUPER TRADELINE® S8910U Universal Hot Surface Ignition Module is designed to provide easy field replacement for a wide range of hot surface ignition modules manufactured by Honeywell, Robertshaw and White-Rodgers. The S8910U Module provides operating control of a direct ignition system using a 120 Vac hot surface igniter. The S8910U replaces existing flame rectification type hot surface ignition modules with the following characteristics:

- 120 Vac (up to 5A) timed warmup hot surface ignition elements.
- Single rod (local sense) or dual rod (remote sense) hot surface ignition.
- One or three ignition trials per call for heat.
- Four-second or seven-second ignition trials.
- Prepurge of 32 seconds or less.
- Up to 96 seconds between trial purge times (three-trial mode only).
- Natural or LP gas.

The S8910U is not designed to replace:

- Intermittent pilot ignition controls.
- Direct spark ignition controls.
- Proven 120 Vac hot surface ignition controls.
- 24 Vac element hot surface ignition controls.
- 240 Vac input/120 Vac element hot surface ignition controls.
- 120 Vac timed warmup hot surface ignition controls with:
 - Ignition trial time shorter than four seconds.
 - Ignition trial time longer than twelve seconds.
 - Edge connectors rather than male quick-connects.

The SUPER TRADELINE® S8910U package contains the S8910U control, and easy-to-use instructions, and the accessories required to adapt the existing hot surface ignition module. The accessory bag assembly includes the White-Rodgers adapter, Robertshaw ground lead, four 1/4 in. female .032 quick-connects, one 3/16 in. female .032 quick-connect, four selection tabs and seven wire labels. The wiring labels are included to assure proper marking of the wires attached to the existing module.

A complete list of the specific Honeywell and other modules that the SUPER TRADELINE® S8910U is designed to replace is provided in Tables 1 through 3.

NOTE: The S8910U is intended to replace only defective ignition controls. The service technician should make sure that the other parts of the appliance and control system operate safely and reliably before replacing the ignition control.

WARNING

EXPLOSION HAZARD. CAN CAUSE INJURY OR EQUIPMENT DAMAGE.

The S8910U can only be used for direct replacement. Check Tables 1 through 3 before replacing an existing hot surface module with the S8910U. If the existing module is not listed, do not use the S8910U to replace it. Always use the selection tab specified in Tables 1 through 3 for the existing module being replaced. Replacing with an unlisted module or using a selection tab not specified can result in appliance malfunction.

Electrical Ratings:

Control Voltage: 24V, 60 Hz.
Maximum Valve Contact Rating: 2A.
Current Draw: .4A plus valve load.
Hot Surface Igniter Voltage: 120 Vac, 60 Hz.
Contact Rating At 120 Vac: 5A.

IMPORTANT

Use the S8910U only in a 60 Hz system. Be sure the system is not 50 Hz.

Hot Surface Igniter or Igniter-Sensor:
Norton Model 201 or 271 or equivalent.

NOTE: If an igniter other than a Norton Model 201 or 271 is used, the igniter must meet the following minimum specifications required over the life of the igniter:

- Igniter must reach 1832°F (1000°C) within 34 seconds with 102 Vac applied.
- Igniter must maintain at least 500M ohms insulation resistance between the igniter leadwires and the igniter mounting bracket.
- Igniter must not develop an insulating layer on its surface (over time) that would prevent flame sensing.
- Igniter surface area immersed in flame must not exceed one-fourth of the grounded area immersed in flame. This would prevent flame sensing.
- Igniter current draw at 132 Vac must not exceed 5A.
Sensor:
A separate sensor is required for remote sensing applications.

Wiring:
Use the existing appliance wiring. If repair or replacement of leadwires is required, follow the instructions on the appliance label. Use the included quick-connect terminals according to the instructions.

Prepurge:
32 seconds.

Igniter Warmup:
34 seconds.

Between Trial Purge:
96 seconds (three trial mode only).

Flame Failure Response Time:
1.5 seconds maximum.

Table 1. White-Rodgers Control to Honeywell S8910U Cross Reference.

NOTES: This list is for reference only. Honeywell reserves the right to add or delete models at any time, based on new or updated information.

White-Rodgers product information was obtained from the 1991 White-Rodgers Product Catalog (R3700).
Table 1. White-Rodgers Control to Honeywell S8910U Cross Reference (Continued).

NOTES: This list is for reference only. Honeywell reserves the right to add or delete models at any time, based on new or updated information.

White-Rodgers product information was obtained from the 1991 White-Rodgers Product Catalog (R3700).

<table>
<thead>
<tr>
<th>Model Numbers</th>
<th>S8910U Specifications</th>
<th>Selection Tab</th>
<th>Remove Black Jumper</th>
<th>Lockout Time (sec)</th>
<th>Ignition Trials</th>
<th>PrePurge (sec)</th>
<th>Igniter Warmup (sec)</th>
<th>Between Trial Purge (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S8910U</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
<td>32</td>
<td>34</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50E47-270 thru 279</td>
<td>B Yes R 4 3 0 45 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50E47-301 thru 309</td>
<td>C Yes R 7 1 0 17 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50E47-310 thru 319</td>
<td>C Yes R 7 1 0 45 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50E47-320 thru 329</td>
<td>C Yes R 7 1 30 17 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50E47-330 thru 339</td>
<td>C Yes R 7 1 30 45 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50E47-340 thru 349</td>
<td>D Yes R 7 3 30 17 90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50E47-350 thru 359</td>
<td>D Yes R 7 3 30 45 90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50E47-360 thru 369</td>
<td>D Yes R 7 3 0 17 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50E47-370 thru 379</td>
<td>D Yes R 7 3 0 45 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-1 thru 9</td>
<td>A Yes R 4 1 0 17 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-10 thru 19</td>
<td>A Yes R 4 1 0 45 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-20 thru 29</td>
<td>A Yes R 4 1 17 17 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-30 thru 39</td>
<td>A Yes R 4 1 17 45 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-40 thru 49</td>
<td>B Yes R 4 3 17 17 77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-50 thru 59</td>
<td>B Yes R 4 3 17 45 77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-60 thru 69</td>
<td>B Yes R 4 3 0 17 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-70 thru 79</td>
<td>B Yes R 4 3 0 45 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-101 thru 109</td>
<td>C Yes R 7 1 0 17 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-110 thru 119</td>
<td>C Yes R 7 1 0 45 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-120 thru 129</td>
<td>C Yes R 7 1 17 17 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-130 thru 139</td>
<td>C Yes R 7 1 17 45 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-140 thru 149</td>
<td>D Yes R 7 3 17 17 77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-150 thru 159</td>
<td>D Yes R 7 3 17 45 77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-160 thru 169</td>
<td>D Yes R 7 3 0 17 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-170 thru 179</td>
<td>D Yes R 7 3 0 45 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-201 thru 209</td>
<td>A Yes R 4 1 0 17 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-210 thru 219</td>
<td>A Yes R 4 1 0 45 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-220 thru 229</td>
<td>A Yes R 4 1 17 17 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-230 thru 239</td>
<td>A Yes R 4 1 17 45 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-240 thru 249</td>
<td>B Yes R 4 3 17 17 77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-250 thru 259</td>
<td>B Yes R 4 3 17 45 77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-260 thru 269</td>
<td>B Yes R 4 3 0 17 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-270 thru 279</td>
<td>B Yes R 4 3 0 45 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-301 thru 309</td>
<td>C Yes R 7 1 0 17 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-310 thru 319</td>
<td>C Yes R 7 1 0 45 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-320 thru 329</td>
<td>C Yes R 7 1 17 17 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-330 thru 339</td>
<td>C Yes R 7 1 17 45 NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-340 thru 349</td>
<td>D Yes R 7 3 17 17 77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-350 thru 359</td>
<td>D Yes R 7 3 17 45 77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-360 thru 369</td>
<td>D Yes R 7 3 0 17 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50F47-370 thru 379</td>
<td>D Yes R 7 3 0 45 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Robertshaw Control to Honeywell S8910U Cross Reference.

NOTE: Robertshaw product information was obtained from the 1993-1994 Robertshaw Uni-Line Catalog (2–064).

<table>
<thead>
<tr>
<th>S8910U Specifications</th>
<th>A— Local or Remote</th>
<th>B Remote</th>
<th>C7 1 N A</th>
<th>D3 9 6</th>
<th>HS780-17NL-104A</th>
<th>HS780-17NL-108A</th>
<th>HS780-17NL-304A</th>
<th>HS780-17NL-308A</th>
<th>HS780-17NR-104A</th>
<th>HS780-17NR-306A</th>
<th>HS780-17NR-308A</th>
<th>HS780-34NL-108A</th>
<th>HS780-34NL-304A</th>
<th>HS780-34NL-306A</th>
<th>HS780-34NL-308A</th>
<th>HS780-34NL-312A</th>
<th>HS780-34NR-104A</th>
<th>HS780-34NR-306A</th>
<th>HS780-34NR-308A</th>
<th>HS780-34NR-312A</th>
<th>HS780-34PL-308A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Numbers</td>
<td>Selection Tab</td>
<td>Remove Black Jumper</td>
<td>Local (L) or Remote Sensing</td>
<td>Lockout Time (sec)</td>
<td>Ignition Trials</td>
<td>PrePurge (sec)</td>
<td>Igniter Warmup (sec)</td>
<td>Between Trial Purge (sec)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>No</td>
<td>—</td>
<td>L</td>
<td>4</td>
<td>1</td>
<td>32</td>
<td>34</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Yes</td>
<td>R</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>17</td>
<td>17</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>No</td>
<td>L</td>
<td>8_a</td>
<td>3</td>
<td>0</td>
<td>17</td>
<td>17</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>No</td>
<td>L</td>
<td>8_a</td>
<td>3</td>
<td>0</td>
<td>17</td>
<td>17</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:

- The S8910U and the original control lockout times are different. The S8910U lockout time is within the design tolerance lockout time of the original control.
- The lockout time of the S8910U is shorter than the original control. Be sure to observe the appliance operation under a variety of input conditions to assure reliable operation.
Table 3. Honeywell Control to Honeywell S8910U Cross Reference.

<table>
<thead>
<tr>
<th>Model Numbers</th>
<th>S8910U Selection Tab</th>
<th>Remove Black Jumper</th>
<th>Local (L) or Remote (R) Sensing</th>
<th>Lockout Time (sec)</th>
<th>Ignition Time (sec)</th>
<th>PrePurge (sec)</th>
<th>Igniter Warmup (sec)</th>
<th>Between Trial Purge (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S8910U</td>
<td>A</td>
<td>-</td>
<td>Local or Remote</td>
<td>4</td>
<td>1</td>
<td>32</td>
<td>34</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td>7</td>
<td>1</td>
<td></td>
<td>96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>NA</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>S89C1004</td>
<td>C</td>
<td>No</td>
<td>L</td>
<td>6(^a)</td>
<td>1</td>
<td>0</td>
<td>34</td>
<td>NA</td>
</tr>
<tr>
<td>S89C1012</td>
<td>C</td>
<td>No</td>
<td>L</td>
<td>6(^a)</td>
<td>1</td>
<td>0</td>
<td>34</td>
<td>NA</td>
</tr>
<tr>
<td>S89C1046</td>
<td>A</td>
<td>No</td>
<td>L</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>34</td>
<td>NA</td>
</tr>
<tr>
<td>S89C1087</td>
<td>C</td>
<td>No</td>
<td>L</td>
<td>6(^a)</td>
<td>1</td>
<td>0</td>
<td>34</td>
<td>NA</td>
</tr>
<tr>
<td>S89C1103</td>
<td>A</td>
<td>No</td>
<td>L</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>34</td>
<td>NA</td>
</tr>
<tr>
<td>S89D1002</td>
<td>C</td>
<td>Yes</td>
<td>R</td>
<td>6(^a)</td>
<td>1</td>
<td>0</td>
<td>34</td>
<td>NA</td>
</tr>
<tr>
<td>S89G1005</td>
<td>B</td>
<td>No</td>
<td>L</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>S89G1013</td>
<td>D</td>
<td>No</td>
<td>L</td>
<td>6(^a)</td>
<td>3</td>
<td>0</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>S89G1021</td>
<td>D</td>
<td>No</td>
<td>L</td>
<td>11(^b)</td>
<td>3</td>
<td>0</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>S89G1047</td>
<td>D</td>
<td>No</td>
<td>L</td>
<td>6(^a)</td>
<td>3</td>
<td>0</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>S89H1003</td>
<td>B</td>
<td>Yes</td>
<td>R</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>S89H1011</td>
<td>D</td>
<td>Yes</td>
<td>R</td>
<td>6(^a)</td>
<td>3</td>
<td>0</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>S89H1029</td>
<td>D</td>
<td>Yes</td>
<td>R</td>
<td>11(^b)</td>
<td>3</td>
<td>0</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>S89J1008</td>
<td>C</td>
<td>No</td>
<td>L</td>
<td>6(^a)</td>
<td>1</td>
<td>0</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>S89C1007</td>
<td>C</td>
<td>No</td>
<td>L</td>
<td>6(^a)</td>
<td>1</td>
<td>30</td>
<td>34</td>
<td>NA</td>
</tr>
<tr>
<td>S89D1006</td>
<td>C</td>
<td>Yes</td>
<td>R</td>
<td>6(^a)</td>
<td>1</td>
<td>30</td>
<td>34</td>
<td>NA</td>
</tr>
<tr>
<td>S89G1003</td>
<td>B</td>
<td>No</td>
<td>L</td>
<td>4</td>
<td>3</td>
<td>30</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>S89G1011</td>
<td>D</td>
<td>No</td>
<td>L</td>
<td>6(^a)</td>
<td>3</td>
<td>30</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>S89G1029</td>
<td>D</td>
<td>No</td>
<td>L</td>
<td>11(^b)</td>
<td>3</td>
<td>30</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>S89G1037</td>
<td>D</td>
<td>No</td>
<td>L</td>
<td>6(^a)</td>
<td>3</td>
<td>30</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>S89H1002</td>
<td>B</td>
<td>Yes</td>
<td>R</td>
<td>4</td>
<td>3</td>
<td>30</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>S89H1010</td>
<td>D</td>
<td>Yes</td>
<td>R</td>
<td>6(^a)</td>
<td>3</td>
<td>30</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>S89H1028</td>
<td>D</td>
<td>Yes</td>
<td>R</td>
<td>11(^b)</td>
<td>3</td>
<td>30</td>
<td>34</td>
<td>30</td>
</tr>
</tbody>
</table>

\(^a\) The S8910U and the original control lockout times are different. The S8910U lockout time is within the design tolerance lockout time of the original control.

\(^b\) The lockout time of the S8910U is shorter than the original control. Be sure to observe the appliance operation under a variety of input conditions to assure reliable operation.

REVIEW THE INSTALLATION

WARNING

FIRE OR EXPLOSION HAZARD.

CAN CAUSE PROPERTY DAMAGE, SEVERE INJURY, OR DEATH.

Follow these warnings exactly:
1. Review the installation as outlined in this section.
2. Plan for frequent maintenance as described in the Maintenance section.

When hot surface ignition systems are used on central heating equipment in barns, greenhouses, and commercial properties and on heating appliances such as commercial cookers, agricultural equipment, industrial heating equipment and pool heaters, heavy demands are made on the controls. Special steps can be required to prevent nuisance shutdowns and control failure due to frequent cycling, severe environmental conditions related to moisture, corrosive chemicals, dust or excessive heat. These applications require Honeywell Home and Building Control Engineering review; contact your Honeywell Sales Representative for assistance.

Review the following conditions that can apply to your specific installation and take the precautionary steps suggested.

Frequent Cycling

These controls are designed for use on appliances that typically cycle only three to four times an hour during the heating season. In year-round applications with greater cycling rates, the control can wear out more quickly. Perform a monthly checkout.

Water or Steam Cleaning

If a module or gas control gets wet, replace it. If the appliance is likely to be cleaned with water or steam, cover the controls and wiring to protect from water or steam flow.
Mount the controls high enough above the bottom of the cabinet to avoid getting wet during normal cleaning procedures. NEMA 4 enclosure is recommended for the ignition module; see the Electronic Ignition Service Manual, form 70-6604.

High Humidity or Dripping Water

Dripping water can cause the module to fail. Never install an appliance where water can drip on the controls. In addition, high ambient humidity can cause the gas control to corrode and fail.

If the appliance is in a humid atmosphere, make sure air circulation around the controls is adequate to prevent condensation. Also, regularly check out the system. NEMA 4 enclosure is recommended for the ignition module; see the Electronic Ignition Service Manual, form 70-6604.

Corrosive Chemicals

Corrosive chemicals can attack the module and gas control, eventually causing a failure. If chemicals are used for routine cleaning, avoid contact with the controls. Where chemicals are suspended in air, for some industrial or agricultural applications, a NEMA 4 enclosure is recommended for the ignition module; see the Electronic Ignition Service Manual, form 70-6604.

Dust or Grease Accumulation

Heavy accumulations of dust or grease can cause controls to malfunction. Where dust or grease can be a problem, provide covers for the module and the gas control to limit contamination. A NEMA 4 enclosure is recommended for the ignition module; see the Electronic Ignition Service Manual, form 70-6604.

Heat

Excessively high temperatures can damage controls. Make sure the maximum ambient temperature at the control does not exceed the rating of the control. If the appliance operates at very high temperatures, use insulation, shielding, and air circulation as necessary to protect the controls. Proper insulation or shielding should be provided by the appliance manufacturer; verify proper air circulation is maintained when the appliance is installed.

WARNING

FIRE OR EXPLOSION HAZARD CAN CAUSE PROPERTY DAMAGE, SEVERE INJURY, OR DEATH.

1. If the ignition module gets wet, it can malfunction, leading to accumulation of explosive gas.
 - Never install where water can flood, drip or condense on the module.
 - Never use a module that has been wet. Replace it.
2. Liquefied petroleum (LP) gas is heavier than air and will not vent upward naturally.
 - Do not light the pilot or operate electric switches, lights or appliances until you are sure the appliance area is free of gas.
3. Do not attempt to disassemble or clean the module. Improper reassembly and cleaning can cause unreliable operation.

CAUTION

1. Disconnect the power supply before beginning wiring to prevent electrical shock or equipment damage.
2. If a new gas control is to be installed, turn off the gas supply before starting the installation. After the gas control is installed, conduct a Gas Leak Test according to the gas control manufacturer instructions.
3. If a module must be mounted where it can be exposed to moisture or water, provide a suitable waterproof enclosure.
4. Using the wire labels provided, label all the wires before disconnecting. Wiring errors can cause improper appliance operation and dangerous conditions such as bypassing safety features.

Perform Preinstallation Safety Inspection

A preinstallation safety check of the appliance and venting system must be done before the replacement module is installed. If a condition is detected that could result in unsafe operation, shut off the appliance and advise the owner of the unsafe condition. Correct any potentially unsafe condition before proceeding with the installation.

Remove Old Module

Disconnect the power supply before doing any work on the unit. Disconnect and tag the wires from the old module using the wire labels provided. Remove the old module from its mounting location.

Mount New Ignition Module

Mount the S8910U Module in the same location as the old module. Protect the module from exposure to water, moisture, corrosive chemicals and excessive dust and grease. Assure that ambient temperature at the module is within the range listed in the Application section.

Mount the module with the terminals down to protect from dripping water and dust. The module can also be mounted with terminals on either side. Do not mount with the terminals pointing up. Refer to Fig. 1 for mounting recommendations. When it is necessary to drill new mounting holes, use the S8910U as a template to mark the mount-
ING hole pattern. Drill new holes as required. Fasten securely with four No. 6-32 machine or No. 8 sheet metal screws.

Install selection tab
Four selection tabs are included with the S8910U. See Tables 1 through 3. Select the correct tab for the system and separate the tab from the other three tabs. Install the tab on the module. Be sure the selection tab is properly positioned and firmly inserted. See Fig. 2. Discard all unused selection tabs at a remote location so an incorrect tab cannot be used in the future. Without a selection tab, the module operates at four-second trial time and one ignition trial.

WARNING
EXPLOSION HAZARD. CAN CAUSE INJURY OR EQUIPMENT DAMAGE.
Only trained professional gas appliance service technicians should install and check out the S8910U and selection tabs. Use only the selection tab specified in Tables 1 through 3 for the existing module being replaced. Always remove all unused selection tabs from the job site and discard them at a remote location. Improper use of the selection tabs can result in appliance malfunction.

Wire the Module
CAUTION
1. Check the wiring diagram furnished by the appliance manufacturer, if available, and compare with Table 4. Carefully follow any special instructions affecting the general procedures outlined in this section.
2. Disconnect the power supply before making wiring connections to prevent electrical shock or equipment damage.

IMPORTANT
1. All wiring must comply with applicable electrical codes and ordinances.
2. Hot surface igniter leadwires should not be allowed to rest against grounded metal surfaces.
3. A common ground is required for the S8910U and the main burner. The 24V (GND) terminal internally grounds one side of the transformer. Any auxiliary controls or limits must not be in the grounded leg. In addition, the appliance should be earth-grounded.
4. Make sure the transformer has adequate VA. The ignition module requires 0.4A at 24 Vac. Add the current draws of all other devices in the control circuit, including the pilot and main valves in the gas control, and multiply by 24 to determine the total VA requirement of these components. Add this total to 9.6 VA (for the ignition module). The result is the minimum transformer VA rating. Use a Class II transformer when replacement is required.
5. Check that L1 (hot) and L2 (neutral) are wired to the proper terminals.

1. Connect the wires to the S8910U Ignition Module as shown in Table 4. Make sure that adequate system ground is provided as indicated in the wiring table. See Fig. 3 through 5. Where a change in quick-connect is required, cut off the original quick-connect, strip the leadwire and firmly crimp in place the proper quick-connect supplied.
2. Verify the thermostat anticipator setting as explained in the preceding IMPORTANT, item 4.

Table 4. Replacement Wiring Terminals.

<table>
<thead>
<tr>
<th>Terminal Function</th>
<th>Replacement Control</th>
<th>Original Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burner Ground Connection</td>
<td>S8910U</td>
<td>Honeywell S89/S890 Terminals</td>
</tr>
<tr>
<td>GND (BURNER)</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>Transformer Secondary (unswitched leg)</td>
<td>24V (GND)</td>
<td>24V (GND)</td>
</tr>
<tr>
<td>Main Valve Common</td>
<td>VALVE (GND)</td>
<td>VALVE (GND)</td>
</tr>
<tr>
<td>Transformer Secondary (switched leg)</td>
<td>24V</td>
<td>24V</td>
</tr>
<tr>
<td>Main Valve Operator</td>
<td>VALVE</td>
<td>VALVE</td>
</tr>
<tr>
<td>120 Vac Neutral Leg Power Supply</td>
<td>L2 120V NEUTRAL</td>
<td>L2 120V NEUTRAL</td>
</tr>
<tr>
<td>120 Vac Hot Leg Power Supply</td>
<td>L1 120V HOT</td>
<td>L1 120V HOT</td>
</tr>
<tr>
<td>Hot Surface Igniter Element</td>
<td>HSI 120V NEUTRAL</td>
<td>HSI 120V</td>
</tr>
<tr>
<td>Hot Surface Igniter Element</td>
<td>HSI 120V HOT</td>
<td>HSI 120V</td>
</tr>
<tr>
<td>Flame Sensor</td>
<td>SENSE</td>
<td>SEN</td>
</tr>
<tr>
<td>Replace with the included 1/4 in. quick-connect.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do not use the S8910U VALVE (GND) terminal. VALVE (GND) and 24V (GND) are interconnected in the appliance wiring.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove quick-connect and replace with the included 3/16 in. quick-connect.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do not use this terminal if model being replaced does not have 120V neutral power supply connection.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use the black wire on the included adapter cable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use the orange wire on the included adapter cable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On remote sense models, remove jumper quick-connect from S8910U sense terminal, cut jumper wire at circuit board and discard. On local sense models, leave black jumper connected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove jumper from S8910U sense terminal, cut jumper wire at circuit board and discard.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 3. Typical hookup when S8910U replaces White-Rodgers 50E/F47.
Fig. 4. Typical hookup when S8910U replaces Robertshaw HS780.
Fig. 5. Typical hookup when S8910U replaces Honeywell S89/S890.

STARTUP AND CHECKOUT

Check out the gas control system:
• At initial installation of the appliance.
• As part of regular maintenance procedures.
• At maintenance intervals determined by the application.
• As the first step in troubleshooting.
• Any time work is done on the system.

Maintenance frequency must be determined individually for each application; see Maintenance section.

WARNING
FIRE OR EXPLOSION HAZARD CAN CAUSE PROPERTY DAMAGE, SEVERE INJURY, OR DEATH.

1. If you smell gas or suspect a gas leak, turn off gas at the manual service valve and evacuate the building. Do not try to light any appliance; do not touch any electrical switch or telephone in the building until you are sure no spilled gas remains.

2. Gas leak test must be done as described in following steps 1 and 6 for initial installation and any time work is done involving the gas piping.

Step 1: Perform visual inspection.
 a. With power off, make sure all wiring connections are clean and tight.
 b. Turn on the power to the appliance and the S8910U.
 c. Open the manual shutoff valves in the gas line to the appliance.
 d. Test for a gas leak upstream of the gas control if piping has been disturbed.

GAS LEAK TEST: Paint the gas control gasket edges and all the pipe connections upstream of the gas control with a rich soap and water solution. Bubbles indicate gas leaks. Tighten the joints and screws or replace the component to stop a gas leak. Recheck with soap and water solution.

Step 2: Verify control system ground.
The ignition module must share a common ground with the main burner. The burner serves as the common grounding area to assure reliable flame detection. If there is not good metal-to-metal contact between the burner and ground, run a lead from the burner to ground.

Step 3: Review normal operating sequence and module specifications. See Operation and Application sections.
Step 4: Reset the ignition module.
- Turn the thermostat or controller to the lowest setting.
- Turn on the system power.
- Wait one minute.

As you do Steps 5 and 6, watch for points where operation deviates from normal. Refer to Troubleshooting section to correct problem.

Step 5: Check safety lockout operation.
- Turn off the gas supply.
- Set the thermostat or controller above the room temperature to call for heat.
- Watch for igniter warmup following prepurge. Igniter starts to glow several seconds after it is powered.
- Time the length of time the gas control is energized; measure the time by connecting a voltmeter across the gas valve terminals:
 - Selection tabs A and B—4 seconds.
 - Selection tabs C and D—7 seconds.
- When using a three-trial ignition selection tab (tabs B or D), watch for the start of 96-second between-trial purge, followed by 34-second igniter warmup and second try for ignition. After a third purge, warmup and trial for ignition sequence, the S8910U should lock out. LED goes into one flash mode after lockout.
- Open the manual gas control knob and make sure no gas is flowing to the burner.
- Set the thermostat below the room temperature and wait one minute before continuing.

Step 6: Check normal operation.
- Set the thermostat or controller above the room temperature to call for heat.
- Observe the lightoff sequence and make sure the main burner lights smoothly without flashback.
- Make sure the burner operates smoothly without floating, lifting, or flame rollout to the furnace vestibule or heat buildup in the vestibule.
- Test for a gas leak downstream of the gas control if piping has been disturbed.

GAS LEAK TEST: Paint the gas control gasket edges and all pipe connections downstream of the gas control with a rich soap and water solution. Bubbles indicate a gas leak. Tighten the joints and screws or replace component to stop a gas leak. Recheck with soap and water solution.

- Check the burner flame condition. The igniter-sensor or sensor must be constantly immersed in flame. Check the burner flame condition as shown in Fig. 6. Do not relocate the hot surface igniter or flame rod.
- Turn the thermostat or controller below the room temperature. Make sure the main burner and pilot flames go out.

WARNING

FIRE OR EXPLOSION HAZARD

CAN CAUSE PROPERTY DAMAGE, SEVERE INJURY, OR DEATH.

Improper location of the 120 Vac hot surface igniter or any flame sensing rod can result in appliance malfunction.

1. Never attempt to relocate the 120 Vac hot surface igniter or the flame sensing rod from the original position established by the appliance manufacturer.
2. Be sure the 120 Vac hot surface igniter or the flame sensing rod is replaced in exactly the original position after removal for inspection, service or replacement.

OPERATION

The S8910U is a direct ignition control used with a 120 Vac timed warmup hot surface igniter. The control provides operating control and shuts off all gas flow on ignition failure or loss of main burner flame in central heat furnaces and other heating appliances.

Module operation is in three phases—prepurge/igniter warmup, trial for ignition and burner operation. The S8910U provides one or three trials for ignition, depending on which selection tab is installed. Fig. 7 shows the normal operating sequence.
Purge/Prepurge
When the S8910U is used in a fan-assisted combustion system, the combustion air blower starts on a call for heat from the thermostat. On proof of airflow, the air proving switch closes and energizes the S8910U. When the S8910U is used in an atmospheric system, the call for heat energizes the module.

In either case, the S8910U first initiates a 32-second delay to allow system purgure.

Igniter Warmup
After purgure, the S8910U energizes the igniter to start the igniter warmup. The module energizes the hot surface igniter for a 34-second warmup period, during which the gas control is closed.

![Diagram](M6327A)

Fig. 7. S8910U normal operating sequence.
Trial for Ignition
At the end of the warmup period, the gas control opens for the ignition trial time determined by the selection tab. The hot surface igniter stays powered for an ignition activation period of one second if the four-second trial time is used or four seconds if the seven-second trial time is used. The igniter turns off after the ignition activation period. Near the end of the ignition trial time, the flame rectification sensing circuit determines if the main burner flame is present. If so, the gas control remains open and the burner operation phase begins.

Burner Operation
When the main burner is lit, a flame rectification circuit is completed between the flame sensor (igniter on local sense systems or flame rod on remote sense systems) and the main burner (burner ground). The S8910U flame sensing circuit detects the flame current and holds open the gas control. The main flame is monitored continuously during the call for heat.

Safety Shutdown
One Trial Selection Tabs (A and C)
If flame is not sensed by the end of the timed trial for ignition, the gas control closes and the module locks out. It must be manually reset by removing power or setting the thermostat below the room temperature for at least 30 seconds.

If the burner lights and flame is proved but goes out during the run cycle, the gas control closes and the module initiates a warmup period followed by one trial for ignition. If flame is not established, the gas control closes and the module locks out, requiring manual reset.

Three Trial Selection Tabs (B and D)
If flame is not sensed by the end of the first timed trial for ignition, the gas control closes and the module initiates a second 96 seconds between trial purge cycle, followed by igniter warmup and a second trial for ignition. If flame is not established, the between trial purge, warmup, trial for ignition cycle is repeated a third time. If flame is still not established following the third trial, the gas control closes and the module locks out. It must be manually reset by removing power or setting the thermostat below the room temperature for at least 30 seconds.

If the burner goes out during the run cycle, the gas control closes and the module checks for the number of ignition trials performed during the current call for heat. If the number is less than three, the module initiates a between trial purge, warmup and trial for ignition. After the third trial during a single call for heat, the module locks out. The module must be manually reset following the lockout.

MAINTENANCE

WARNING
FIRE OR EXPLOSION HAZARD CAN CAUSE PROPERTY DAMAGE, SEVERE INJURY, OR DEATH.
Do not attempt to take apart the module or to clean it. Improper assembly and cleaning can cause unreliable operation.

Regular preventive maintenance is important in applications that place a heavy load on system controls such as those used in the commercial cooking and agricultural and industrial industries because:

- In many such applications, particularly commercial cooking, the equipment operates 100,000 to 200,000 cycles per year. Such heavy cycling can wear out the gas control in one to two years.
- Exposure to water, dirt, chemicals and heat can damage the gas control and shut down the control system. A NEMA 4 enclosure can reduce exposure to environmental contaminants. See Electronic Ignition Service manual, form 70-6604.

The maintenance program should include regular check-out of the system as outlined in the Startup and Checkout section, and checkout of the control system as described in the appliance manufacturer literature. Maintenance frequency must be determined individually for each application. Some considerations are:

- Cycling frequency. Appliances that may cycle 20,000 times annually should be checked monthly.
- Intermittent use. Appliances that are used seasonally should be checked before shutdown and again before the next use.
- Consequence of unexpected shutdown. Where the cost of an unexpected shutdown would be high, the system should be checked more often.
- Dusty, wet, or corrosive environment. Because these environments can cause the gas control to deteriorate more rapidly, the system should be checked more often.

Any control should be replaced if it does not perform properly on checkout or troubleshooting. In addition, replace any module if it is wet or looks like it has ever been wet. Protective enclosures, as described in the Planning the Installation section, are recommended regardless of checkout frequency.

TROUBLESHOOTING

IMPORTANT
1. The following service procedures are provided as a general guide. Follow appliance manufacturer service instructions if available.
2. Meter readings between gas control and ignition module must be taken within the trial for ignition period. Once the ignition module shuts off, wait for retry or reset at the thermostat.
3. If any component does not function properly, make sure it is correctly installed and wired before replacing it.
4. The ignition module cannot be repaired. If it malfunctions, replace it.
5. Only trained, experienced service technicians should service hot surface ignition systems.
6. After servicing, verify proper system operation.

Perform the checkout steps in the Startup and Checkout section as the first step in troubleshooting. Then check the troubleshooting sequence (Fig. 8) to pinpoint the cause of the problem.

After troubleshooting, perform the checkout procedure again to be sure the system is operating normally.

Status LED used to Troubleshoot

The LED can be used to check the appliance status. A description of the LED signals follows.

IMPORTANT

The LED shows system status for the current call for heat. When the call for heat is interrupted (thermostat satisfied or system power switched off), the LED goes off and the status information is lost.

- Pulsing heartbeat is the normal operating mode during a call for heat (24V terminal is powered). The system can be in any of the normal operating modes including prepurge, warmup, ignition trial, between trial purge, or normal run.
- One flash indicates the S8910U is in an ignition lockout mode. The most probable cause is the main burner failing to light or failure to detect the flame. Run the appliance through a call for heat and if the burner does not light, check the:
 - gas supply
 - input voltage
 - hot surface igniter
 - gas control
 - wiring

If the main burner lights, but goes out at the end of ignition trial, check the:
- igniter/sensor
- flame rod
- burner ground connections
- wiring

- Two flashes indicates the flame rectification signal is weak. The most probable causes are:
 - contaminated or mislocated igniter/sensor or flame rod
 - poor flame sense leadwire insulation or connections
 - poor gas pressure

If the flame rectification signal is strong when the appliance lights, but weak while heat is being delivered, check for overheating of the igniter/sensor, flame rod ceramic or flame sense leadwires.
- Three flashes indicate an internal error. The most probable cause is an S8910U logic failure. Start a new call for heat and if the three-flash signal returns, replace the S8910U.

Ignition System Checks

Step 1: Check the igniter wire harness.
Make sure:
- Ignition cable does not run in contact with any metal surfaces.
- Connections to the ignition module and to the igniter or igniter-sensor are clean and tight.
- Ignition cable provides good electrical continuity.

Step 2: Check the ignition system grounding. Nuisance shutdowns are often caused by a poor or erratic ground.
- A common ground is required for the module, igniter, flame sensor and main burner.
 - Check for good metal-to-metal contact between the igniter bracket and the main burner.
 - Check the ground path from the GND (BURNER) terminal on the module to the main burner. Make sure the connections are clean and tight. If the wire is damaged or deteriorated, replace it by following the appliance manufacturer instructions. A temporary leadwire connection between the GND (BURNER) terminal and the main burner can help confirm a ground path problem.
 - Check the temperature at the igniter ceramic or flame sensor insulator. Excessive temperature permits leakage to ground. Contact the appliance manufacturer if the temperature exceeds the rating of the igniter or sensor.
 - If the flame sensor or bracket is bent out of position, restore to the correct position.
 - Replace the igniter and sensor or igniter-sensor with an identical unit if the insulator is cracked.

STEP 3: Check the flame sensing circuit.
- Make sure the burner flame is capable of providing a good rectification signal. See Fig. 6.
- Make sure about 3/4 to 1 in. of the flame sensor or igniter-sensor is continuously immersed in the flame for the best flame signal. See Fig. 6.
- Check for excessive (higher than 1000°F [538°C]) temperature at the ceramic insulator on the flame sensor. Excessive temperature can cause a short to ground.
- Check for a cracked igniter-sensor or a sensor ceramic insulator, which can cause short to ground, and replace unit if necessary.
 - Make sure the electrical connections are clean and tight. Replace damaged wire with moisture-resistant No. 18 wire rated for continuous duty up to 221°F (105°C).
- If the igniter is other than a Norton 201 or 271, make sure it meets the following specifications:
 - Igniter must reach 1832°F (1000°C) within 34-seconds with 102 Vac applied.
 - Igniter must maintain at least 500M ohm insulation resistance between the igniter leadwires and the igniter mounting bracket.
 - Igniter must not develop an insulating layer on its surface (over time) that would prevent flame sensing.
 - Igniter current draw at 132 Vac must not exceed 5A.
Fig. 8. S8910U troubleshooting sequence.