Application And Selection Guide

COMMERCIAL HVAC COMPONENTS — ENGINEERED FOR SUCCESS
About valve selection
The valve selection section is constructed in one of two ways:

For unassembled product:
As a reference, pictures will represent the valves and actuators separately; and part numbers are highlighted in blue. To order a complete product one OS# must be chosen from each blue box.

For factory assembled product:
The complete assembled OS# will be displayed in the body of the chart (except for cartridge cage valves, both an actuator and valve must be chosen). Pictures will also reference the factory assembled configuration.

Additional product information
To find more detailed information on the individual products included in this document, go to: http://customer.honeywell.com and use the search text box to quickly locate product specific content.

Contact Information

<table>
<thead>
<tr>
<th>Commercial Components</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Hotline</td>
<td>888-516-9347</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Customer Care</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Entry</td>
<td>888-793-8193</td>
<td>800-356-0149</td>
</tr>
<tr>
<td>Product Drop-Ship Team</td>
<td>763-954-4140</td>
<td>800-356-0149</td>
</tr>
<tr>
<td>Butterfly & Flanged Control Ball Valve Ordering</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Take-Off Service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Let Honeywell Take-Off Service provide a complete job schedule for your projects for dampers, actuators, valves and VFDs</td>
<td>888-664-4092</td>
</tr>
</tbody>
</table>

Online Resources

Honeywell Product Ordering
Get the information you want and order the products you need. http://customer.honeywell.com

Honeywell Partner Web Site
A web site developed for our partners. Get product information, guide specs, wiring diagrams and more. http://buildingcontrols.honeywell.com

Honeywell eLearning
A convenient and smart way of learning about our products with 10 to 20 minute training modules. Register at the Honeywell customer website above for access. http://customer.honeywell.com/learning
Section 7: Appendices

Appendix A:
Valve Selection & Sizing ...354

Technology Comparison of Control Ball and Globe Valves ..373

Appendix B:
NEMA Standard Classification Code for Enclosures374

Appendix C:
Best Practices for Low Power Control Signal Wiring..........375
Introduction
This section provides information on valve selection and sizing. Valves must be selected for ability to meet temperature, pressure, flow control characteristic, and piping connection requirements of the hydronic system. Valve sizing is critical to ensure support for heating and cooling loads with adequate valve capacity, yet able to control system flow to provide stable building conditions efficiently.

Definitions

Valve Components

Actuator: The part of an automatic control valve that moves the stem based on an electric, electronic, or pneumatic signal from a controller. The actuator and valve can be two separate devices or together they can be one device.

Body: The valve casting through which the controlled fluid flows (Fig. 1).

Port: The opening in the valve seat.

Seat: The stationary part of the valve body that has a raised lip to contact the valve disc when closing off flow of the controlled fluid.

Stem: The shaft that runs through the valve bonnet and connects an actuator to the valve plug.

Trim: All parts of the valve that contact the controlled fluid. Trim includes the stem, packing, plug, disc, and seat; it does not include the valve body.

Valve Flow Characteristics

Direction of Flow: The correct flow of the controlled fluid through the valve is usually indicated on the valve body. If the fluid flow through the valve is incorrect, the disc can slam into the seat as it approaches the closed position. The result is poor control, excessive valve wear, and noisy operation. In addition, the actuator must work harder to reopen the closed valve since it must overcome the pressure exerted by the fluid on top of the disc rather than have the fluid assist in opening the valve by exerting pressure under the disc. Gate and butterfly valves may offer bi-directional flow.

Equal percentage: A valve which changes flow by an equal percentage (regardless of flow rate) for similar movements in stem travel (at any point in the flow range).

Linear: A valve which provides a flow-to-lift relationship that is directly proportional. It provides equal flow changes for equal lift changes, regardless of percentage of valve opening.

Quick-opening: A valve which provides maximum possible flow as soon as the stem lifts the disc from the valve seat.

Valve flow characteristic: The relationship between the stem travel of a valve, expressed in percent of travel, and the fluid flow through the valve, expressed in percent of full flow.
Valve Flow Terms

Rangeability: The ratio of maximum flow to minimum controllable flow. Approximate rangeability ratios are 50 to 1 for V-port globe valves and 30 to 1 for contoured plug valves.

EXAMPLE:
A valve with a total flow capacity of 100 gpm full open and a rangeability of 30 to 1, can accurately control flow accurately as low as 3 gpm.

Tight shut-off/close-off: A valve condition in which virtually no leakage of the controlled fluid occurs in the closed position. Generally, only single-seated valves provide tight shut-off. Double-seated valves typically have a one to three percent leakage in the closed position.

Turndown: The ratio of maximum flow to minimum controllable flow of a valve installed in a system. Turndown is equal to or less than rangeability.

EXAMPLE:
For the valve in the rangeability example, if the system requires a 66 gpm maximum flow through the valve and since the minimum accurately controllable flow is 3 gpm, the turndown is 22.

Valve Ratings

Flow coefficient (capacity index): Used to state the flow capacity of a control valve for specified conditions. In the control valve industry currently one of three flow coefficients is used depending upon the location and system of units; British Av, European kvs, or United States Cv. The flow coefficients have the following relationships:

\[A_V = 0.0000278 \, k_{vs} \]
\[A_V = 0.0000240 \, C_v \]
\[k_{vs} = 0.865 \, C_v \]

The flow coefficient Av is in cubic meters per second and can be determined from the formula:

\[A_V = \frac{Q \cdot \rho}{\eta \cdot \Delta p} \]

Where:
\(Q \) = volumetric flow in cubic meters per second.
\(\rho \) = fluid density in kilograms per cubic meter.
\(\Delta p \) = static pressure loss across the valve in pascals.

The flow coefficient kvs is water flow in cubic meters per hour with a static pressure loss across the valve of \(10^6 \) pascals (1 bar) within the temperature range of 5 to 40°C and can be determined from the formula:

\[k_{vs} = Q \frac{\Delta p_{kvs}}{\Delta p_{kvs}} \cdot \frac{\rho}{\rho_w} \]

Where:
\(Q \) = volumetric flow in cubic meters per hour.
\(\rho \) = fluid density in kilograms per cubic meter.
\(\rho_w \) = density of water in kilograms per cubic meter.
\(\Delta p_{kvs} \) = static pressure loss of \(10^6 \) pascals.
\(\Delta p \) = static pressure loss across the valve in pascals.

The flow coefficient Cv is water flow in gallons per minute with a pressure loss across the valve of one pound per square inch within the temperature range of 40 to 100°F and can be determined for other conditions from the formula:

\[C_v = Q \frac{1}{\Delta p} \cdot \frac{\rho}{\rho_{w}} \]

Where:
\(Q \) = volumetric flow in US gallons per minute.
\(\rho \) = fluid density in pounds per cubic foot.
\(\rho_{w} \) = density of water in pounds per cubic foot within the temperature range of 40 to 100°F
\(\Delta p \) = static pressure loss across the valve in pounds per square inch.

Close-off rating: The maximum pressure drop that a valve can withstand without leakage while in the full closed position. The close-off rating is a function of actuator power to hold the valve closed against pressure drop, by structural parts such as the stem can be the limiting factor. The construction of gate-style valves, such as ball valves, often allows them to hold back high head pressures in the closed position, although the actuator may not be powerful enough to operate the valve against such forces.

EXAMPLE:
A valve with a close-off rating of 10 psi could have 40 psi upstream pressure and 30 psi downstream pressure. Note that in applications where failure of the valve to close is hazardous, the maximum upstream pressure must not exceed the valve close-off rating, regardless of the downstream pressure.

The valve close-off rating is independent of the actual valve body rating. See definition of BODY RATING (ACTUAL).
Close-off rating of three-way valves: The maximum pressure difference between either of the two inlet ports and the outlet port for mixing valves, or the pressure difference between the inlet port and either of the two outlet ports for diverting valves.

Pressure drop: The difference in upstream and downstream pressures of the fluid flowing through the valve.

Pressure drop (critical): The flow of a gaseous controlled fluid through the valve increases as the pressures drop increases until reaching a critical point. This is the critical pressure drop. Any increase in pressure drop beyond the critical pressure drop is dissipated as noise and cavitation rather than increasing flow. The noise and cavitation can destroy the valve and adjacent piping components.

Body rating (nominal): The theoretical pressure rating, expressed in psi, of the valve body exclusive of packing, disc, etc. The nominal rating is often cast on the valve body and provides a way to classify the valve by pressure. A valve of specified body material and nominal body rating often has characteristics such as pressure-temperature ratings, wall thickness, and end connections which are determined by a society such as ANSI (American National Standards Institute). Figure 2 shows ANSI pressure-temperature ratings for valves. Note that the nominal body rating is not the same as the actual body rating.

Body rating (actual): The correlation between safe, permissible flowing fluid pressure and flowing fluid temperature of the valve body (exclusive of the packing, disc, etc.). The nominal valve body rating is the permissible pressure at a specific temperature.

EXAMPLE:

From Figure 2, a valve with an ANSI rating of 150 psi (ANSI Class 150) has an actual rating of 225 psi at 250F.

Maximum pressure and temperature: The maximum pressure and temperature limitations of fluid flow that a valve can withstand. These ratings may be due to valve packing, body, or disc material or actuator limitations. The actual valve body ratings are exclusively for the valve body and the maximum pressure and temperature ratings are for the complete valve (body and trim). Note that the maximum pressure and temperature ratings may be less than the actual valve body ratings.

EXAMPLE:

The body of a valve, exclusive of packing, disc, etc., has a pressure and temperature rating of 125 psi at 335F. If the valve contains a composition disc that can withstand a temperature of only 240F, then the temperature limit of the disc becomes the maximum temperature rating for the valve.
Valve Types

Ball valve: A ball valve has a precision ball between two seats with a body (Fig. 3). Ball valves have several port sizes for a given body size and go from closed to open with a 90 degree turn of the stem. They are available in both two-way and three-way configurations. For HVAC applications, ball valve construction includes brass and cast iron bodies; stainless steel, chrome plated brass, and cast iron balls; resilient seats with various temperature ratings. Ball valves provide tight shut-off, while full port models have low flow resistance, and models with flow characterizing inserts can be selected for modulating applications.

Butterfly valve: A valve with cylindrical body, a shaft, and a rotating disc (Fig. 4). The disc rotates 90 degrees from open to closed. The disc seats against a resilient body liner or spring-loaded metal seat and may be manufactured for tight shut-off or made smaller for reduced operating torque at lower close-off. Butterfly valves have limited rangeability for modulating applications so are used mainly for two-way operation. For three-way applications, two butterfly valves are assembled to a pipe tee with linkage for simultaneous operation.

Double-seated valve: A valve with two seats, plugs, and discs. Double-seated valves are suitable for applications where fluid pressure is too high to permit a single seated valve to close. The discs in a double-seated valve are arranged so that in the closed position there is minimal fluid pressure forcing the stem toward the open or closed position; the pressure on the discs is essentially balanced. For a valve of given size and port area, the double-seated valve requires less force to operate than the single-seated valve so the double seated valve can use a smaller actuator than a single seated. Also, double-seated valves often have a larger port area for a given pipe size. A limitation of double-seated valves is that they do not provide tight shut-off. Since both discs rigidly connect together and changes in fluid temperature can cause either the disc or the valve body to expand or contract, one disc may seat before the other and prevent the other disc from seating tightly.

Flanged-end connections: A valve that connects to a pipe by bolting a flange on the valve to a flange screwed onto the pipe. Flanged connections are typically used on large valves only.

Gate valve: A valve that controls flow using a gating mechanism, usually a plate, that moves across the valve seat instead of pushing against the flow. The actuator works against the friction of the seals rather than directly against the force of the water. Gate valves are inherently self-sealing and are often capable of high close-off pressures without an actuator. Ball valves are a type of gate valve.

Globe valve: A valve which controls flow by moving a circular disk against or away from a seat. When used in throttling control a contoured plug (throttling plug) extends from the center of circular disk through the center of the seat for precise control (Fig. 1).

Pressure-balanced valve: A globe valve with a sealed pressure chamber built into the plug, which equalizes head pressure across the seat and allows most of the actuator force to be used to close off the flow, resulting in very high close-off ratings with very low seat leakage.

Reduced-port valve: A valve with a capacity less than the maximum for the valve body. Ball, butterfly, and smaller globe valves are available with reduced ports to allow correct sizing for good control.
Single-seated valve: A valve with one seat, plug, and disc. Single-seated valves are suitable for applications requiring tight shut-off. Since a single-seated valve has nothing to balance the force of the fluid pressure exerted on the plug, it requires more closing force than a double-seated valve of the same size and therefore requires more actuator force than a double-seated valve.

Threaded-end connection: A valve with threaded pipe connections. Valve threads are usually tapered female, to National Pipe Thread standards, but male connections are available for special applications. Some valves have an integral union for easier installation.

Three-way valve: A valve with three ports. The internal design of a three-way valve classifies it as a mixing or diverting valve. Three-way valves control liquid in modulating or two-position applications and do not provide tight shut-off.

Two-way valve: A valve with one inlet port and one outlet port. Two-way valves control water or steam in two-position or modulating applications and provide tight shut-off in both straight through and angle patterns.

Valve Material and Media
Valves with bronze or cast iron bodies having brass or stainless steel trim perform satisfactorily in HVAC hydronic systems when the water is treated properly. Failure of valves in these systems may be an indication of inadequate water treatment. The untreated water may contain dissolved minerals (e.g., calcium, magnesium, or iron compounds) or gases (e.g., carbon dioxide, oxygen, or ammonia). Inadequate treatment results in corrosion of the system. Depending on the material of the valve, the color of the corrosion may indicate the substance causing the failure (Table 1).

Table 1. Corrosive Elements in Hydronic Systems.

<table>
<thead>
<tr>
<th>Brass or Bronze Component</th>
<th>Corrosive Substance</th>
<th>Corrosion Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>Light Blue-Green</td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>Blue or Dark Blue</td>
<td></td>
</tr>
<tr>
<td>Carbonates</td>
<td>Dark Blue-Green</td>
<td></td>
</tr>
<tr>
<td>Magnesium or Calcium</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>Oxides</td>
<td>Black (water)</td>
<td></td>
</tr>
<tr>
<td>Sulphide (Hydrogen)</td>
<td>Black (Gas)</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Rust</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iron or Steel Component</th>
<th>Corrosive Substance</th>
<th>Corrosion Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium or Calcium</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Rust</td>
<td></td>
</tr>
</tbody>
</table>

Petroleum products from sources such as cutting oils, solder flux, etc. can cause some rubber compounds to swell and interfere with moving parts.

Chloramines, chemical compounds of ammonia and chlorine used to treat municipal drinking water, are reported to attack some rubber compounds commonly used in closed loop hydronic systems.

Particulate present in the system can interfere with, and sometimes damage moving parts. Examples include: rust (Fe₂O₃), magnetite (Fe₃O₄), sand (quartz granules), silt from municipal water, iron filings from pipe threads, and scale precipitated from hard water. Rust, in particular, is highly abrasive and can rapidly wear out stem seals, causing leaks.

To prevent damage to valves and pumps, a complete flushing of the system during commissioning, including the existing structure when building an addition, may be required to remove physical particulate. Additional components may also be needed, such as in-line Y-strainers for large objects such as stones or solder blobs and mechanical filtration, such as a 50 micron 10% side-stream filter piped in parallel with the system pumps.

Glycol solutions may be used to prevent hydronic systems freezing. Glycol solutions should be formulated for HVAC systems. Some available glycol solutions formulated for other uses contain additives that are injurious to some system seals. In addition, hydronic seals react differently to water and glycol such that when a new system is started up with water or glycol the seals are effective. The hydronic seals are likely to leak if the system is later restarted with media changed from to water to glycol or glycol to water. To prevent leakage part of the process of media changeover should include replacing seals such as, pump and valve packing. Glycol mixtures are usually limited to 50% concentration. At 60% concentration, glycol mixtures have their minimum freezing temperature, but can have unstable phase changes which may severely damage a system.
Valve Selection

Proper valve selection matches a valve to the control and hydronic system physical requirements. First consider the application requirements and then consider the valve characteristics necessary to meet those requirements. The following questions provide a guide to correct valve selection.

— What is the piping arrangement and size?

The piping arrangement indicates whether a two-way or three-way mixing or diverting valve is needed. The piping size gives some indication of whether the valve requires a screwed end or a flanged end connection.

— Does the application require two-position control or proportional control? Does the application require a normally open or normally closed valve? Should the actuator be direct acting or reverse acting?

In its state of rest, the valve is normally open or closed depending on the load being controlled, the fluid being controlled, and the system configuration.

For chilled water coils, it is usually preferable to close the valve on fan shutdown to prevent excessive condensation around the duct and coil, and to save pumping energy. This may be accomplished with either normally closed valves or a variety of other control schemes. Lower cost and more powerful normally open valve assemblies may be used with the close-on-shutdown feature and allow, in the case of pneumatic systems, the capability to provide heating or cooling in the event of air compressor failure.

Converter control valves should be normally closed and outdoor air preheat valves should be normally open.

— Is tight shut-off necessary? What differential pressure does the valve have to close against? How much actuator close-off force is required?

Valves should never be allowed to “dead head” a pump unless the pumps are controlled by variable speed drive systems capable of detecting such conditions and shutting down the pumps.

Single-seated valves provide tight shut-off, while double-seated valves do not. Double seated valves are acceptable for use in pressure bypass or in-line throttling applications.

The design and flow capacity of a valve determine how much actuator force is required for a given close-off. Therefore, the valve must first be sized, then, the valve and actuator selected to provide the required close-off.

— What type of medium is being controlled? What are the temperature and pressure ranges of the medium?

Valves must be compatible with system media composition, maximum and minimum temperature, and maximum pressure. The temperature and pressure of the medium being controlled should not exceed the maximum temperature and pressure ratings of the valve.

For applications such as chlorinated water or brine, select valve materials to avoid corrosion.

— What is the pressure drop across the valve? Is the pressure drop high enough?

The full open pressure drop across the valve must be high enough to allow the valve to exercise control over its portion of the hydronic system. However, the full open pressure drop must not exceed the valves rating for quiet service and normal life. Closed pressure drop must not exceed valve and actuator close-off rating.

Globe Valve

Globe valves are popular for HVAC applications. They are available in pipe sizes from 1/2 in. to 12 in. and in a large variety of capacities, flow characteristics, and temperature and pressure capabilities. They provide wide rangeability and tight shut-off for excellent control over a broad range of conditions. Globe valves are made in two-way, straight or angle configurations and three-way mixing and diverting designs. Globe valves close against the flow and have arrows on the body indicating correct flow direction. Incorrect piping can result in stem oscillations, noise, and high wear.

A two-way globe valve has one inlet port and one outlet port (Fig. 5) in either a straight through or angle pattern. The valve can be either push-down-to-close or push-down-to-open.

Pneumatic and electric actuators with linear motion to operate globe valves are available for operation with many control signals.

Fig. 5. Two-Way Globe Valves.
Ball Valve

Ball valves are available for two-position applications either manual (hand) or power operated or for modulating applications with direct coupled electric actuators. Ball valves are relatively low cost, provide tight close off, and are available in two-way and three-way configurations. As with all other valves, ball valves must be properly sized to provide good flow control.

When used in modulating service, ball valves must be specifically designed for modulating service as compared to two-position service. Packing must provide leak-free sealing through thousands of cycles to ensure trouble-free HVAC service. The ball, stem and seals should be made of materials that minimizes sticking and breakaway torque to achieve smooth operation.

Two-way ball valves have equal percentage flow control characteristics and flow in full-port models can be in either direction.

Three-way ball valves can be used in either mixing or diverting service. Full port models have linear flow control characteristics for constant total flow. A popular option with 3-way valves is a 20% flow capacity reduction in the B port to equalize pressure losses in a coil-bypass application.

Butterfly Valve

Butterfly valves (Fig. 6) control the flow of hot, chilled, or condenser water in two-position or proportional applications. Butterfly valves are available in two-way or three-way configurations. Tight shutoff may be achieved by proper selection of actuator force and body lining. The three-way valve can be used in mixing or diverting applications with the flow in any direction. The three-way valve consists of two butterfly valves that mount on a flanged cast iron tee and are linked to an actuator which opens one valve as it closes the other. Minimum combined capacity of both valves occurs at the half-open position.

When butterfly valves are used for proportional control, they must be applied using conservative pressure drop criteria. If the pressure drop approaches the critical pressure drop, unbalanced forces on the disc can cause oscillations, poor control, and/or damage to the linkage and actuator, even though the critical flow point is not reached. Modulating control is usually limited to a range of 15 to 65 degrees of disk rotation.

Butterfly valves are usually found in larger pipe sizes. For example, two butterfly valves could be piped in a mixing application to control the temperature of the water going back to the condenser. The valves proportion the amount of tower water and condenser water return that is flowing in the condenser water supply line.

Two-way Valve

Two-way valves are available as globe, ball, or butterfly valves. The combination of valve body and actuator (called valve assembly) determines the valve stem position. Two-way valves control steam or water in two-position or proportional applications (Fig. 7). They provide tight shutoff and are available with quick-opening, linear, or equal percentage flow characteristics. Control valves are typically installed on the supply side of convectors and radiators, and the return side of small-bore water coils used in fan-forced equipment.

Ideally, a control system has a linear response over its entire operating range. The sensitivity of the control to a change in temperature is then constant throughout the entire control range. For example, a small increase in temperature provides a small increase in cooling. A nonlinear system has varying sensitivity. For example, a small increase in temperature can provide a large increase in cooling in one part of the operating range and a small increase in another part of the operating range. To achieve linear control, the combined system performance of the actuator, control valve, and load must be linear. If the system is linear, a linear control valve is appropriate (Fig. 8). If the system is not linear, a nonlinear control valve, such as an equal percentage valve, is appropriate to balance the system so that resultant performance is linear.
Fig. 8. Linear vs. Nonlinear System Control.

QUICK-OPENING VALVE
A quick-opening two-way valve includes only a disc guide and a flat or quick-opening plug. This type of valve is used for two position control of steam. The pressure drop for a quick opening two-way valve should be 10 to 20 percent of the piping system pressure differential, leaving the other 80 to 90 percent for the load and piping connections. Figure 9 shows the relationship of flow versus stem travel for a quick-opening valve. To achieve 90 percent flow, the stem must open only 20 percent. Linear or equal percentage valves can be used in lieu of quick-opening valves in two-position control applications as the only significant positions are full open and full closed.

Fig. 9. Flow vs. Stem Travel Characteristic of a Quick-Opening Valve.

Linear Valve
A linear valve may include a V-port plug or a contoured plug. This type of valve is used for proportional control of steam or chilled water, or in applications that do not have wide load variations. Typically in steam or chilled water applications, changes in flow through the load (e.g., heat exchanger, coil) cause proportional changes in heat output. For example, Figure 10 shows the relationships between heat output, flow, and stem travel given a steam heat exchanger and a linear valve as follows:

— Graph A shows the linear relationship between heat output and flow for the steam heat exchanger. Changes in heat output vary directly with changes in the fluid flow.

— Graph B shows the linear relationship between flow and stem travel for the linear control valve. Changes in stem travel vary directly with changes in the fluid flow.

NOTE: As a linear valve just starts to open, a minimum flow occurs due to clearances required to prevent sticking of the valve. Some valves have a modified linear characteristic to reduce this minimum controllable flow. This modified characteristic is similar to an equal percentage valve characteristic for the first 5 to 10 percent of stem lift and then follows a linear valve characteristic for the remainder of the stem travel.

— Graph C shows the linear relationship between heat output and stem travel for the combined heat exchanger and linear valve. Changes in heat output are directly proportional to changes in the stem travel.

Thus a linear valve is used in linear applications to provide linear control.

Fig. 10. Heat Output, Flow, and Stem Travel Characteristics of a Linear Valve.

EQUAL PERCENTAGE VALVE
An equal percentage valve includes a contoured plug or contoured V-port shaped so that similar movements in stem travel at any point in the flow range change the existing flow an equal percentage, regardless of flow rate. In mathematical terms, this is an exponential response.
EXAMPLE:
When a valve with the stem at 30 percent of its total lift and existing flow of 3.9 gpm (Table 2) opens an additional 10 percent of its full travel, the flow measures 6.2 gpm or increases 60 percent. If the valve opens an additional 10 percent so the stem is at 50 percent of its full travel, the flow increases another 60 percent and is 9.9 gpm.

Table 2. Stem Position vs. Flow for Equal Percentage Valve.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem</td>
<td>Flow</td>
</tr>
<tr>
<td>10% increase</td>
<td>40% open</td>
</tr>
<tr>
<td>10% increase</td>
<td>50% open</td>
</tr>
</tbody>
</table>

An equal percentage valve is used for proportional control in hot water applications and is useful in control applications where wide load variations can occur. Typically in hot water applications, large reductions in flow through the load (e.g., coil) cause small reductions in heat output. An equal percentage valve is used in these applications to achieve linear control. For example, Figure 11 shows the heat output, flow, and stem travel relationships for a hot water coil, with 200F, entering water and 50F entering air and an equal percentage valve, as follows:

— Graph A shows the nonlinear relationship between heat output and flow for the hot water coil. A 50 percent reduction in flow causes a 10 percent reduction in heat output. To reduce the heat output by 50 percent, the flow must decrease 90 percent.

— Graph B shows the nonlinear relationship between flow and stem travel for the equal percentage control valve. To reduce the flow 50 percent, the stem must close 10 percent. If the stem closes 50 percent, the flow reduces 90 percent.

— Graph C shows the relationship between heat output and stem travel for the combined coil and equal percentage valve. The combined relationship is close to linear. A 10 percent reduction in heat output requires the stem to close 10 percent, a 50 percent reduction in heat output requires the stem to close 50 percent, and a 90 percent reduction in heat output requires the stem to close 90 percent.

The equal percentage valve compensates for the characteristics of a hot water application to provide a control that is close to linear.

Three-way Valves

Three-way valves (Fig. 12) control the flow of liquids in mixing or diverting valve applications (Fig. 13). The internal design of a three-way globe valve enables it to seat against the flow of liquid in the different applications. An arrow cast on the valve body indicates the proper direction of liquid flow. It is important to connect three-way valve piping correctly or oscillations, noise, and excessive valve wear can result. Three-way valves are typically have linear flow characteristics, although, some are equal percentage for flow through the coil with linear flow characteristics for flow through the coil bypass. Ball valves are also available in a three-way configuration, while two butterfly valves can be made to act as a three-way valve.
MIXING VALVE

A mixing valve provides two inlet ports and one common outlet port. The valve receives liquids to be mixed from the inlet ports and discharges the liquid through the outlet port (Fig. 12). The position of the valve disc determines the mixing proportions of the liquids from the inlet ports.

The close-off pressure in a mixing valve equals the maximum value of the greater inlet pressure minus the minimum value of the downstream pressure.

EXAMPLE:

A mixing valve application has a maximum pressure of 25 psi on one inlet port, maximum pressure of 20 psi on the other inlet port, and minimum downstream pressure of 10 psi on the outlet port. The close-off pressure is 25 psi – 10 psi = 15 psi. The application requires a mixing valve with at least a 15 psi close-off rating. The actuator selected must have a high enough force to operate satisfactorily.

In globe mixing valve applications, the force exerted on the valve disc due to unbalanced pressure at the inlets usually remains in the same direction. In cases where there is a reversal of force, the force changes direction and holds the valve disc off the seat, cushioning it as it closes. If the pressure difference for the system is greater than the pressure ratings of available globe mixing valves, use a ball mixing valve or two butterfly valves in a tee configuration.

Globe mixing valves are not suitable for modulating diverting valve applications. If a mixing valve is piped for modulating diverting service, the inlet pressure slams the disc against the seat when it nears the closed position. This results in loss of control, oscillations, and excessive valve wear and noise. Mixing valves are acceptable using about 80 percent of the close-off rating, but not recommended, in two-position diverting valve applications.

DIVERTING VALVE

A globe diverting valve provides one common inlet port and two outlet ports. The diverting valve uses two V-port plugs which seat in opposite directions and against the common inlet flow. The valve receives a liquid from one inlet port and discharges the liquids through the outlet ports (Fig. 12) depending on the position of the valve disc. If the valve disc is against the bottom seat (stem up), all the liquid discharges through the side outlet port. If the valve disc is against the top seat (stem down), all the liquid discharges through the bottom outlet port.

The close-off pressure in a diverting valve equals the maximum value of the inlet pressure minus the minimum value of the downstream pressure.

Globe diverting valves must not be used for mixing service. As with mixing valves used for diverting service, media pressure drop across the valve can cause it to slam shut with resulting loss of control.

EXAMPLE:

A diverting valve application has 20 psi maximum on the inlet port, one outlet port discharging to the atmosphere, and the other outlet port connecting to a tank under 10 psi constant pressure. The pressure difference between the inlet and the first outlet port is 20 psi and between the inlet and second outlet port is 10 psi. The application requires a diverting valve with at least 20 psi close-off rating.

Valve Sizing

Every valve has a capacity index or flow coefficient (Cv). Typically determined for the globe and ball valves at full open and about 60 degrees open for butterfly valves. Cv is the quantity of water in gpm at 60F that flows through a valve with a pressure differential of 1 psi. Sizing a valve requires knowing the medium (liquid or gas) and the required pressure differential to calculate the required Cv. When the required Cv is not available in a standard valve, select the next closest and calculate the resulting valve pressure differential at the required flow to verify acceptable performance.

After determination of the valve Cv, calculation of the flow of any medium through that valve can be found if the characteristics of the medium and the pressure drop across the valve are known.
Water Valves

Determine the capacity index (C_v) for a valve used in a water application, using the formula:

$$C_v = \frac{Q \sqrt{G}}{h}$$

Where:
- Q = Flow of fluid in gallons per minute required to pass through the valve.
- G = Specific gravity of the fluid (water = 1).
- h = Pressure drop in psi. See Figures 14 and 15 for glycol solution correction values.

NOTE: The calculated C_v will rarely match the C_v of an available valve. For most accurate proportional control, select the valve with the next lower C_v value, and increase the pressure drop across the control valve to achieve the required flow through the coil by reducing the setting of the balancing valve. Otherwise, turn-down ratio will be reduced, proportionally.

For example, if the calculated C_v is 87, and the two closest C_v values are 63 and 100, the best choice for control precision would be the valve with a C_v of 63, and increase pressure drop across the valve by 90%.

If increased pressure drop is not possible, use the valve with C_v of 100, and accept a 13% reduction in valve rangeability.

For two-position control, always chose the largest C_v greater than the coil with acceptable close-off pressure rating.

Determining the C_v of a water valve requires knowing the quantity of water (gpm) through the valve and the pressure drop (h) across the valve. If the fluid is a glycol solution, use the pressure drop multipliers from either Figure 14 or 15. See the sections on QUANTITY OF WATER and WATER VALVE PRESSURE DROP. Then select the appropriate valve based on C_v temperature range, action, body ratings, etc., per VALVE SELECTION guidelines.

Quantity of Water

To find the quantity of water (Q) in gallons per minute use one of the following formulas:

1. When Btu/hr is known:

 $$Q = \frac{Btu/\text{hr}}{K \times TD_w}$$

 Where:
 - Btu/hr = Heat output.
 - K = Value from Table 3; based on temperature of water entering the coil. The value is in pounds per gallon x 60 minutes per hour.
 - TD_w = Temperature difference of water entering and leaving the coil.

Table 3. Water Flow Formula Table

<table>
<thead>
<tr>
<th>Water</th>
<th>Temp F</th>
<th>K</th>
<th>Water</th>
<th>Temp F</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>502</td>
<td>200</td>
<td>80</td>
<td>498</td>
<td>250</td>
</tr>
<tr>
<td>60</td>
<td>500</td>
<td>225</td>
<td>100</td>
<td>496</td>
<td>275</td>
</tr>
<tr>
<td>80</td>
<td>498</td>
<td>250</td>
<td>120</td>
<td>495</td>
<td>300</td>
</tr>
<tr>
<td>100</td>
<td>496</td>
<td>275</td>
<td>150</td>
<td>490</td>
<td>350</td>
</tr>
<tr>
<td>120</td>
<td>495</td>
<td>300</td>
<td>180</td>
<td>487</td>
<td>400</td>
</tr>
</tbody>
</table>
2. For hot water coil valves:

\[Q = \frac{\text{cfm} \times 1.08 \times \text{TD}_a}{\text{K} \times \text{TD}_w} \]

Where:
- \(\text{cfm} \) = Airflow through the coil.
- 1.08 = A scaling constant. See Note.
- \(\text{TD}_a \) = Temperature difference of air entering and leaving the coil.
- \(\text{K} \) = Value from Table 3; based on temperature of water entering the coil (pounds per gallon x 60 minutes per hour).
- \(\text{TD}_w \) = Temperature difference of water entering and leaving the coil.

NOTE: The scaling constant 1.08 is derived as follows:

\[1.08 = \frac{0.24 \text{BTU/lbairF} \times 60 \text{min/hr}}{1 \text{lbair}} \times \frac{1 \text{lbair}}{13.35 \text{ft}^3} = \frac{14.40 \text{Btumin}}{\text{Fhr}13.35 \text{ft}^3} \]

Simplifying the equation:

\[1.08 = \frac{14.40 \text{Btumin}}{\text{Fhr}13.35 \text{ft}^3} \]

To find the scaling constant for air conditions other than standard, divide 14.40 Btu by specific volume of air at those conditions.

3. For fan system chilled water coil valves:

\[Q = \frac{\text{cfm} \times \text{Btu/lb}}{113 \times \text{TD}_w} \]

Where:
- \(\text{cfm} \) = Airflow through the coil.
- \(\text{Btu/lb} \) = Heat per pound of dry air removed. Includes both sensible and latent heat.
- 113 = A scaling constant.
- \(\text{TD}_w \) = Temperature difference of water entering and leaving the coil.

WATER VALVE PRESSURE DROP

To determine valve pressure drop:

1. For two-way valves consider the following guidelines for valve pressure drop:
 a. Include the pressure drop in the design of the water circulating system.
 — In systems with two-way valves only, it is often necessary to provide a pump relief bypass or some other means of differential pressure control to limit valve pressure drops to the valve capabilities. For control stability at light loads, pressure drop across the fully closed valve should not exceed triple the pressure drop used for sizing the valve.
 — To avoid high pressure drops near the pump, reverse returns are recommended in large systems.
 b. The pressure drop across an open valve should be about half of the pressure difference between system supply and return, enough so that the valve, not the friction through the coil or radiator, controls the volume of water flow or the valve pressure drop should be equal to or greater than the pressure drop through the coil or radiator, plus the pipe and fittings connecting them to the supply and return mains.
 c. Verify allowable full open and full closed pressure drops for all proportional and two-position water valves with appropriate manufacturer literature.
 d. Make an analysis of the system at maximum and minimum rates of flow to determine whether or not the pressure difference between the supply and return mains stays within the limits that are acceptable from the standpoint of control stability and close-off rating.

2. For two- and three-way valves consider the following guidelines for valve pressure drop:
 a. In load bypass applications (Fig. 13) such as radiators, coils, and air conditioning units, the pressure drop should be 50 to 70 percent of the minimum difference between the supply and return main pressure at design operating conditions.
 b. A manual balancing valve may be installed in the bypass to equalize the load drop and the bypass drop.

3. When selecting pressure drops for three-way mixing valves in boiler bypass applications (Fig. 13), consider the following:
 a. Determine the design pressure drop through the boiler including all of the piping, valves, and fittings from the bypass connection through the boiler and up to the three-way valve input.
 b. The valve pressure drop should be equal to or greater than the drop through the boiler and the fittings. If the valve drop is much smaller than the boiler pressure drop at design, effective control is obtained only when the disc is near one of the two seats. The mid-portion of the valve lift will be relatively ineffective.
c. A manual balancing valve may be installed in the boiler bypass to equalize the boiler drop and the bypass drop.

WATER VALVE SIZING EXAMPLES

EXAMPLE 1:
A two-way linear valve is needed to control flow of 45°F chilled water to a cooling coil. The coil manufacturer has specified an eight-row coil having a water flow pressure drop of 3.16 psi. Further, specifications say that the coil will produce 55°F leaving air with a water flow of 14.6 gpm. Supply main is maintained at 40 psig, return is at 30 psig. Select required capacity index (Cv) of the valve.

Use the water valve Cv formula to determine capacity index for Valve V1 as follows:

\[
C_v = \frac{Q \sqrt{G}}{\sqrt{h}}
\]

Where:
- \(Q\) = Flow of fluid in gallons per minute required is 14.6 gpm.
- \(G\) = Specific gravity of water is 1.
- \(h\) = Pressure drop across the valve. The difference between the supply and return is 10 psi. 50% to 70% x 10 psi = 5 to 7 psi. Use 6 psi for the correct valve pressure drop. Note that 6 psi is also greater than the coil pressure drop of 3.16 psi.

Substituting:

\[
C_v = \frac{14.6 \sqrt{1}}{\sqrt{6}} = 6
\]

Select a linear valve providing close control with a capacity index of 6 and meeting the required pressure and temperature ratings.

EXAMPLE 2:
A bypass valve is required to prevent flow through the chiller from dropping below 90 percent of design flow. When sizing valves for pump or chiller bypass applications (Fig. 16), system conditions that cause the valve to open or close completely must be considered before a pressure drop can be selected.

Assume the following:
- System flow at design, 1000 gpm
- Pump head at design, 48 ft
- Pump head at 90 percent flow, 50 ft
- Pressure across mains at AHU 1 at design flow, 28 ft
- Chiller pressure drop, 12 ft
- Chiller piping loop design pressure drop, 8 ft

With full system flow, Valve V5 is closed. Pressure drop across V5 equals the pump head minus the friction drops to V5. Pressure drop across Valve V5 is then 48 ft – 12 ft (chiller drop) – 4 ft (supply drop) – 4 ft (return drop) or 28 ft.

With system flow at 90 percent, the pump head rises to 50 ft, while the friction drops fall to the lower values shown in Figure 16. For additional information on chiller bypass operation see Chiller, Boiler, and Distribution System Applications section. Pressure drop across V5 equals the pump head minus the friction drops to V5. Pressure drop across Valve V5 is then 50 ft – 9.6 ft (chiller drop) – 3.2 ft (supply drop) – 3.2 ft (return drop) or 34 ft. Converting ft to psi, 34 ft x 0.4335 psi/ft = 14.7 psi.

Substituting the flow of water, specific gravity of water, and pressure drop in the Cv formula shows that the Valve V5 should have a Cv of 235.

\[
C_v = \frac{900 \sqrt{1}}{\sqrt{14.7}} = 235
\]
EXAMPLE 3:

Sizing water valves for heating coils is especially critical. In Figure 17, a valve with a Cv of 12 will have 30 percent of the available pressure drop when full open, while a valve with a Cv of 5 will have 70 percent of the available pressure drop. As shown in Figure 18, the valve with 70 percent of the available pressure drop essentially provides the equal percentage water flow control, resulting in linear coil heat transfer and stable temperature control. The valve with only 30 percent of the available pressure drop has a more linear flow control which results in nonlinear coil heat transfer. See EQUAL PERCENTAGE VALVE section for further information.

EXAMPLE 4:

A three-way mixing valve is needed for a heat exchanger application with a bypass line. Water flow is specified at the rate of 70 gpm. Manufacturer data for the exchanger indicates a pressure drop of 1.41 ft of water through the exchanger coils.

Fig. 16. Chiller Bypass Application.

Fig. 17. Equal Percentage Valve Hot Water Application.

Fig. 18. Effect of Pressure Drop in Hot Water Valve Sizing.
Use the water valve C_v formula to determine capacity index for Valve V1 as follows:

$$C_v = \frac{Q\sqrt{G}}{\sqrt{h}}$$

Where:

- Q = Flow of fluid in gallons per minute required to pass through the valve is 70 gpm.
- G = Specific gravity of water is 1.
- h = Pressure drop across the valve. Plans of the heating system indicate three-inch supply and return mains. From an elbow equivalent table and pipe friction chart found in the ASHRAE Handbook or other reference manuals, the calculated pressure drop through a three-inch tee and the piping from the valve and the tee to the exchanger is 0.09 psi. Heat exchanger pressure drop is 1.41 ft of water or 1.41 ft x 0.433 psi/ft = 0.61 psi. Total pressure drop from bypass connection through the heat exchanger and to the hot-water input of the three-way valve is 0.61 + 0.09 or 0.70 psi.

Since the valve pressure drop (h) should be equal to or greater than the drop through the heat exchanger and fittings, 0.70 psi is used as the valve pressure drop.

For optimum control, a manual balancing valve is installed in the bypass line to equalize the pressure drops in the exchanger and bypass circuits.

$$C_v = \frac{70\sqrt{1}}{0.70} = 83.6 \text{ or } 84$$

Substituting the flow of water, specific gravity of water, and pressure drop in the C_v formula shows that the valve should have a C_v of 83.6 or 84.

Select a linear valve providing close control with a capacity index of 84 and meeting the required pressure and temperature ratings.

Steam Valves

Calculate the required capacity index (C_v) for a valve used in a steam application, using the formula:

$$C_v = \frac{(1 + 0.00075s)Q\sqrt{V}}{63.5\sqrt{h}}$$

Where:

- Q = Quantity of steam in pounds per hour required to pass through the valve.
- V = Specific volume of steam, in cubic feet per pound, at the average pressure in the valve. For convenience Table 5 at the end of the STEAM VALVES section lists the square root of the specific volume of steam for various steam pressures. Therefore, use the value in this column of the table as is; do not take its square root.

- h = Pressure drop in psi.
- s = Superheat in degrees F.

Determining the C_v for a steam valve requires knowing the quantity of steam (Q) through the valve, the pressure drop (h) across the valve, and the degrees of superheat. See QUANTITY OF STEAM and STEAM VALVE PRESSURE DROP. Then select the appropriate valve based on C_v, temperature range, action, body ratings, etc., per VALVE SELECTION guidelines.

NOTE: When the superheat is 0F, then $(1 + 0.00075s)$ equals 1 and may be ignored.

QUANTITY OF STEAM

To find the quantity of steam (Q) in pounds per hour use one of the following formulas:

1. When Btu/hr (heat output) is known:

$$Q = \frac{Btu/hr}{1000 Btu/lb\text{steam}}$$

Where:

- Btu/hr = Heat output.
- 1000 Btu/lb= A scaling constant representing the approximate heat of vaporization of steam.

2. For sizing steam coil valves:

$$Q = \frac{CFM \times TD_a \times 1.08}{1000 Btu/lb\text{steam}}$$

Where:

- cfm = Cubic feet per minute (ft³/min) of air from the fan.
- TDa = Temperature difference of air entering and leaving the coil.
- 1.08 = A scaling constant. See NOTE.
- 1000 Btu/lb= A scaling constant representing the approximate heat of vaporization of steam.
NOTE: The scaling constant 1.08 is derived as follows:

\[
1.08 = \frac{0.24 \text{ BTU}}{\text{lbair F} \times \frac{60 \text{ min}}{1 \text{ hr}} \times \frac{1 \text{ lbair}}{13.35 \text{ ft}^3}}
\]

Where:

- \(\frac{1 \text{ lbair}}{13.35 \text{ ft}^3}\) is the specific volume of air at standard conditions of temperature and atmospheric pressure.

Simplifying the equation:

\[
1.08 = \frac{14.40 \text{ Btu min}}{\text{F hr} 13.35 \text{ ft}^3}
\]

To find the scaling constant for air conditions other than standard, divide 14.40 Btu by specific volume of air at those conditions.

3. For sizing steam to hot water converter valves:

\[
Q = \text{gpm} \times TD_w \times 0.49
\]

Where:

- \(\text{gpm}\) = Gallons per minute of water flow through converter.
- \(TD_w\) = Temperature difference of water entering and leaving the converter.
- \(0.49\) = A scaling constant. This value is derived as follows:

\[
0.49 = \frac{8.33 \text{ lbwater gal}}{1 \times \frac{60 \text{ min}}{1 \text{ hr}} \times \frac{1 \text{ lbsteam}}{1000 \text{ Btu}} \times \frac{1 \text{ Btu}}{1 \text{ lb water F}}}
\]

Simplifying the equation:

\[
0.49 = \frac{0.49 \text{ minlbsteam}}{\text{galhrF}}
\]

4. When sizing steam jet humidifier valves:

\[
Q = \frac{(W_1 - W_2) \text{lbmoisture}}{1 \text{ lbair}} \times \frac{1.08 Fhr}{\text{min} \times \frac{13.35 \text{ ft}^3}{1 \text{ lbair}}} \times 60 \text{ min} \times \frac{1}{1 \text{ hr}}
\]

Where:

- \(W_1\) = Humidity ratio entering humidifier, pounds of moisture per pound of dry air.
- \(W_2\) = Humidity ratio leaving humidifier, pounds of moisture per pound of dry air.
- \(\frac{13.35 \text{ ft}^3}{1 \text{ lbair}}\) = The specific volume of air at standard conditions of temperature and atmospheric pressure.
- \(\frac{ft^3}{min}\) = Cubic feet per minute (cfm) of air from the fan.
- \(\frac{60 \text{ min}}{1 \text{ hr}}\) = A conversion factor.

Simplifying:

\[
Q = 4.49 \frac{(W_1 - W_2) \text{lbmoisture}}{hr}
\]

5. When Equivalent Direct Radiation (EDR) is known:

\[
Q = EDR(\text{Total}) \times 0.24
\]

Where:

- \(EDR(\text{Total})\) = Radiators are sized according to Equivalent Direct Radiation (EDR). If controlling several pieces of radiation equipment with one valve, add the EDR values for all pieces to obtain the total EDR for the formula.
- \(0.24\) = A scaling constant, lb steam/unit EDR. See Table 4.

Table 4. Output of Radiators and Convecors.

<table>
<thead>
<tr>
<th>Average Radiator of Convectro, Temperature, Deg F</th>
<th>Cast Iron Radiator Btu/HR/EDR<sup>a</sup></th>
<th>Convector, Btu/HR/EDR<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>215</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>200</td>
<td>209</td>
<td>205</td>
</tr>
<tr>
<td>190</td>
<td>187</td>
<td>183</td>
</tr>
<tr>
<td>180</td>
<td>167</td>
<td>162</td>
</tr>
<tr>
<td>170</td>
<td>148</td>
<td>140</td>
</tr>
<tr>
<td>160</td>
<td>129</td>
<td>120</td>
</tr>
<tr>
<td>150</td>
<td>111</td>
<td>102</td>
</tr>
<tr>
<td>140</td>
<td>93</td>
<td>85</td>
</tr>
<tr>
<td>130</td>
<td>76</td>
<td>69</td>
</tr>
<tr>
<td>120</td>
<td>60</td>
<td>53</td>
</tr>
<tr>
<td>110</td>
<td>45</td>
<td>39</td>
</tr>
<tr>
<td>100</td>
<td>31</td>
<td>27</td>
</tr>
<tr>
<td>90</td>
<td>18</td>
<td>16</td>
</tr>
</tbody>
</table>

^a At Room Temperature
^b At 65 F Inlet Air Temperature

STEAM VALVE PRESSURE DROP

Proportional Applications

When specified, use that pressure drop (h) across the valve.

When not specified:

1. Calculate the pressure drop (h) across the valve for good modulating control:

\[h = 80\% \times (Pm - Pr)\]

NOTE: For a zone valve in a system using radiator orifices use:

\[h = (50 - 75)\% \times (Pm - Pr)\]

Where:

- \(Pm\) = Pressure in supply main in psig or psia (gage or absolute pressure).
- \(Pr\) = Pressure in return in psig or psia. A negative value if a vacuum return.
2. Determine the critical pressure drop:
 \[h_{\text{critical}} = 50\% \times P_{\text{ma}} \]

 Where:
 \(P_{\text{ma}} \) = Pressure in supply main in psia (absolute pressure)
 \(\text{psia} \) = psig + 14.7

 Use the smaller value \(h \) or \(h_{\text{critical}} \) when calculating \(C_v \).

Two-Position Applications

Use line sized valves whenever possible. If the valve size must be reduced, use:

\[h = 20\% \times (P_{\text{m}} - P_{\text{r}}) \]

Where
\(P_{\text{m}} \) = Pressure in supply main in psig or psia (gage or absolute pressure).
\(P_{\text{r}} \) = Pressure in return in psig or psia. A negative value if a vacuum return.

STEAM VALVE SIZING EXAMPLES

EXAMPLE 1:

A two-way linear valve (V1) is needed to control high-pressure steam flow to a steam-to-water heat exchanger. An industrial-type valve is specified. Steam pressure in the supply main is 80 psig with no superheat, pressure in return is equal to atmospheric pressure, water flow is 82.5 gpm, and the water temperature difference is 20F.

Use the steam valve \(C_v \) formula to determine capacity index for Valve V1 as follows:

\[C_v = \frac{1 + 0.00075S}{63.5\sqrt{h}} \times \frac{Q\sqrt{V}}{gpm\times TD_{\text{w}} \times 0.49} \]

Where:
\(Q \) = The quantity of steam required to pass through the valve is found using the converter valve formula:
\[Q = gpm \times TD_{\text{w}} \times 0.49 \]

Where:
\(gpm \) = 82.5 gpm water flow through exchanger
\(TD_{\text{w}} \) = 20F temperature difference
\(0.49 \) = A scaling constant

Substituting this data in the formula:

\[Q = 808.5 \text{ pounds per hour} \]
\[h = \text{The pressure drop across a valve in a modulating application is:} \]
\[h = 85\% \times (P_{\text{m}} - P_{\text{r}}) \]

Where:
\(P_{\text{m}} \) = Upstream pressure in supply main is 80 psig.
\(P_{\text{r}} \) = Pressure in return is atmospheric pressure or 0 psig.

Substituting this data in the pressure drop formula:

\[h = 0.80 \times (80 - 0) \]
\[= 0.80 \times 80 \]
\[= 64 \text{ psi} \]

The critical pressure drop is found using the following formula:

\[h_{\text{critical}} = 50\% \times (\text{psig} + 14.7 \text{ psi}) \]

\[h_{\text{critical}} = 0.50 \times (80 \text{ psig upstream} + 14.7 \text{ psi}) \]
\[= 0.50 \times 94.7 \text{ psi} \]
\[= 47.4 \text{ psi} \]

The critical pressure drop (\(h_{\text{critical}} \)) of 47.4 psi is used in calculating \(C_v \) since it is less than the pressure drop (\(h \)) of 64 psi. Always, use the smaller of the two calculated values.

\[V = \text{Specific volume (V) of steam, in cubic feet per pound at average pressure in valve (P_{avg})}: \]
\[P_{avg} = P_{\text{m}} - \frac{h}{2} \]
\[= 80 - \frac{47.4}{2} = 80 - 23.6 = 56.4 \text{ psig} \]

The specific volume of steam at 56.4 psig is 6.14 and the square root is 2.48.

\[63.5 = \text{A scaling constant.} \]

Substituting the quantity of steam, specific volume of steam, and pressure drop in the \(C_v \) formula shows that the valve should have a \(C_v \) of 4.6.

\[C_v = \frac{(1 + 0.00075 \times 0) \times 808.5 \times 2.48}{63.5 \sqrt{47.4}} \]
\[= \frac{1745.6}{63.5 \times 6.88} = 4.6 \]

NOTE: If \(P_{avg} \) is rounded off to the nearest value in Table 5 (60 psi), the calculated \(C_v \) is 4.5 a negligible difference.
Select a linear valve providing close control with a capacity index of 4 and meeting the required pressure and temperature ratings.

NOTE: For steam valves downstream from pressure reducing stations, the steam will be superheated in most cases and must be considered.

EXAMPLE 2:
In Figure 19, a linear valve (V1) is needed for accurate flow control of a steam coil that requires 750 pounds per hour of steam. Upstream pressure in the supply main is 5 psig and pressure in the return is 4 in. Hg vacuum minimum.

![Fig. 19. Linear Valve Steam Application.](image)

Use the steam valve \(C_v \) formula to determine capacity index for Valve V1 as follows:

\[
C_v = \frac{(1 + 0.00075 s)Q \sqrt{V}}{63.5 \sqrt{h}}
\]

Where:
- \(Q \) = Quantity of steam required to pass through the valve is 750 pounds per hour.
- \(h \) = The pressure drop across a valve in a modulating application is found using:
 \[
 h = 80% \times (P_m - P_r)
 \]
 and:
 \(P_m \) = Upstream pressure in supply main is 5 psig.
 \(P_r \) = Pressure in return is 4 in. Hg vacuum.

NOTE: 1 in. Hg = 0.49 psi and 1 psi = 2.04 in. Hg.

Therefore,

\[
h = 0.80 \times [5 - (-1.96)]
\]

\[
= 0.80 \times 6.96
\]

\[
= 5.6 \text{ psi}
\]

The critical pressure drop is found using the following formula:

\[
h_{\text{critical}} = 50\% \times (\text{psig} + 14.7 \text{ psi})
\]

\[
h_{\text{critical}} = 0.50 \times (5 \text{ psig upstream} + 14.7 \text{ psi})
\]

\[
= 0.50 \times 19.7 \text{ psia}
\]

\[
= 9.9 \text{ psi}
\]

The pressure drop (h) of 5.6 psi is used in calculating the \(C_v \), since it is less than the critical pressure drop \((h_{\text{critical}})\) of 9.9 psi.

\[
V = \text{Specific volume (V) of steam, in cubic feet per pound at average pressure in valve (P}_{\text{avg}}):
\]

\[
P_{\text{avg}} = \frac{P_m - h}{2}
\]

\[
= \frac{5 - 5.6}{2} = \frac{5 - 2.8}{2} = 2.2 \text{psig}
\]

The specific volume of steam at 2.2 psig is 23.54 and the square root is 4.85.

\[
63.5 = \text{A scaling constant.}
\]

\[
s = 0
\]

Substituting the quantity of steam, specific volume of steam, and pressure drop in the \(C_v \) formula shows that Valve V1 should have a \(C_v \) of 24.17 or the next higher available value (e.g., 25).

\[
C_v = \frac{(1 + 0.00075 \times 0) \times 750 \times 4.85}{63.5 \sqrt{5.6}}
\]

\[
= \frac{3637.5}{63.5 \times 2.37} = 24.17
\]

NOTE: If \(P_{\text{avg}} \) is rounded off to the nearest value in Table 5 (2 psi), the calculated \(C_v \) is 24.30.

Select a linear valve providing close control with a capacity index of 25 and meeting the required pressure and temperature ratings.

EXAMPLE 3:
Figure 20 shows the importance of selecting an 80 percent pressure drop for sizing the steam valve in Example 2. This pressure drop (5.6 psig) approximates the linear valve characteristic. If only 30 percent of the available pressure drop is used (0.30 \times 6.96 \text{ psi} = 2.10 \text{ psi or 2 psi}), the valve \(C_v \) becomes:

\[
C_v = \frac{(1 + 0.00075 s)Q \sqrt{V}}{63.5 \sqrt{h}}
\]

\[
= \frac{750 \times 4.85}{63.5 \sqrt{2}} = 40.5
\]
Appendix A: Valve Selection and Sizing

This larger valve (2 psi drop) has a steeper curve that is further away from the desired linear valve characteristic. See LINEAR VALVE under VALVE SELECTION for more information.

![Diagram showing valve opening and steam flow]

Fig. 20. Effect of Pressure Drop in Steam Valve Sizing.

Table 5. Properties of Saturated Steam.

<table>
<thead>
<tr>
<th>Vacuum, Inches of Mercury</th>
<th>Boiling Point or Steam Temperature (Deg F)</th>
<th>Specific Volume (V), cu. ft/lb</th>
<th>\sqrt{V} (For valve sizing)</th>
<th>Maximum Allowable Pressure Drop, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>76.6</td>
<td>706.00</td>
<td>26.57</td>
<td>0.23</td>
</tr>
<tr>
<td>25</td>
<td>133.2</td>
<td>145.00</td>
<td>12.04</td>
<td>1.2</td>
</tr>
<tr>
<td>20</td>
<td>161.2</td>
<td>75.20</td>
<td>8.672</td>
<td>2.4</td>
</tr>
<tr>
<td>15</td>
<td>178.9</td>
<td>51.30</td>
<td>7.162</td>
<td>3.7</td>
</tr>
<tr>
<td>14</td>
<td>181.8</td>
<td>48.30</td>
<td>6.950</td>
<td>3.9</td>
</tr>
<tr>
<td>12</td>
<td>187.2</td>
<td>43.27</td>
<td>6.576</td>
<td>4.4</td>
</tr>
<tr>
<td>10</td>
<td>192.2</td>
<td>39.16</td>
<td>6.257</td>
<td>4.9</td>
</tr>
<tr>
<td>8</td>
<td>196.7</td>
<td>35.81</td>
<td>5.984</td>
<td>5.4</td>
</tr>
<tr>
<td>6</td>
<td>201.0</td>
<td>32.99</td>
<td>5.744</td>
<td>5.9</td>
</tr>
<tr>
<td>4</td>
<td>204.8</td>
<td>30.62</td>
<td>5.533</td>
<td>6.4</td>
</tr>
<tr>
<td>2</td>
<td>208.5</td>
<td>28.58</td>
<td>5.345</td>
<td>6.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gage Pressure, psig</th>
<th>Boiling Point or Steam Temperature (Deg F)</th>
<th>Specific Volume (V), cu. ft/lb</th>
<th>\sqrt{V} (For valve sizing)</th>
<th>Maximum Allowable Pressure Drop, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>239.4</td>
<td>16.49</td>
<td>4.061</td>
<td>12.4</td>
</tr>
<tr>
<td>11</td>
<td>241.6</td>
<td>15.90</td>
<td>3.987</td>
<td>12.8</td>
</tr>
<tr>
<td>12</td>
<td>243.7</td>
<td>15.35</td>
<td>3.918</td>
<td>13.4</td>
</tr>
<tr>
<td>15</td>
<td>249.8</td>
<td>13.87</td>
<td>3.724</td>
<td>14.8</td>
</tr>
<tr>
<td>20</td>
<td>258.8</td>
<td>12.00</td>
<td>3.464</td>
<td>17.4</td>
</tr>
<tr>
<td>25</td>
<td>266.8</td>
<td>10.57</td>
<td>3.251</td>
<td>19.8</td>
</tr>
<tr>
<td>30</td>
<td>274.0</td>
<td>9.463</td>
<td>3.076</td>
<td>22.4</td>
</tr>
<tr>
<td>35</td>
<td>280.6</td>
<td>8.56</td>
<td>2.93</td>
<td>24.8</td>
</tr>
<tr>
<td>40</td>
<td>286.7</td>
<td>7.826</td>
<td>2.797</td>
<td>27.4</td>
</tr>
<tr>
<td>45</td>
<td>292.4</td>
<td>7.209</td>
<td>2.685</td>
<td>29.8</td>
</tr>
<tr>
<td>50</td>
<td>297.7</td>
<td>6.682</td>
<td>2.585</td>
<td>32.4</td>
</tr>
<tr>
<td>55</td>
<td>302.6</td>
<td>6.232</td>
<td>2.496</td>
<td>34.8</td>
</tr>
<tr>
<td>60</td>
<td>307.3</td>
<td>5.836</td>
<td>2.416</td>
<td>37.4</td>
</tr>
<tr>
<td>65</td>
<td>311.8</td>
<td>5.491</td>
<td>2.343</td>
<td>39.8</td>
</tr>
<tr>
<td>70</td>
<td>316.0</td>
<td>5.182</td>
<td>2.276</td>
<td>42.4</td>
</tr>
<tr>
<td>75</td>
<td>320.0</td>
<td>4.912</td>
<td>2.216</td>
<td>44.8</td>
</tr>
<tr>
<td>80</td>
<td>323.9</td>
<td>4.662</td>
<td>2.159</td>
<td>47.4</td>
</tr>
<tr>
<td>85</td>
<td>327.6</td>
<td>4.445</td>
<td>2.108</td>
<td>49.8</td>
</tr>
<tr>
<td>90</td>
<td>331.2</td>
<td>4.239</td>
<td>2.059</td>
<td>52.4</td>
</tr>
<tr>
<td>95</td>
<td>334.6</td>
<td>4.060</td>
<td>2.015</td>
<td>54.8</td>
</tr>
<tr>
<td>100</td>
<td>337.9</td>
<td>3.888</td>
<td>1.972</td>
<td>57.4</td>
</tr>
<tr>
<td>110</td>
<td>344.1</td>
<td>3.595</td>
<td>1.896</td>
<td>62.3</td>
</tr>
<tr>
<td>120</td>
<td>350.0</td>
<td>3.337</td>
<td>1.827</td>
<td>67.4</td>
</tr>
<tr>
<td>130</td>
<td>355.2</td>
<td>3.12</td>
<td>1.766</td>
<td>72.3</td>
</tr>
<tr>
<td>140</td>
<td>360.9</td>
<td>2.923</td>
<td>1.710</td>
<td>77.4</td>
</tr>
<tr>
<td>150</td>
<td>366.2</td>
<td>2.746</td>
<td>1.657</td>
<td>82.3</td>
</tr>
<tr>
<td>160</td>
<td>370.6</td>
<td>2.602</td>
<td>1.613</td>
<td>87.4</td>
</tr>
<tr>
<td>170</td>
<td>375.5</td>
<td>2.462</td>
<td>1.569</td>
<td>92.3</td>
</tr>
<tr>
<td>180</td>
<td>379.6</td>
<td>2.345</td>
<td>1.531</td>
<td>97.4</td>
</tr>
<tr>
<td>190</td>
<td>383.9</td>
<td>2.234</td>
<td>1.495</td>
<td>102.3</td>
</tr>
<tr>
<td>200</td>
<td>387.8</td>
<td>2.134</td>
<td>1.461</td>
<td>107.4</td>
</tr>
<tr>
<td>225</td>
<td>397.4</td>
<td>1.918</td>
<td>1.385</td>
<td>119.8</td>
</tr>
<tr>
<td>250</td>
<td>406.0</td>
<td>1.742</td>
<td>1.320</td>
<td>132.4</td>
</tr>
<tr>
<td>275</td>
<td>414.2</td>
<td>1.595</td>
<td>1.263</td>
<td>145.0</td>
</tr>
<tr>
<td>300</td>
<td>421.8</td>
<td>1.472</td>
<td>1.213</td>
<td>157.4</td>
</tr>
<tr>
<td>350</td>
<td>435.6</td>
<td>1.272</td>
<td>1.128</td>
<td>182.4</td>
</tr>
<tr>
<td>400</td>
<td>448.1</td>
<td>1.120</td>
<td>1.058</td>
<td>207.4</td>
</tr>
<tr>
<td>450</td>
<td>459.5</td>
<td>0.998</td>
<td>0.999</td>
<td>232.4</td>
</tr>
<tr>
<td>500</td>
<td>470.0</td>
<td>0.900</td>
<td>0.949</td>
<td>257.4</td>
</tr>
<tr>
<td>550</td>
<td>479.7</td>
<td>0.818</td>
<td>0.904</td>
<td>282.4</td>
</tr>
<tr>
<td>600</td>
<td>488.8</td>
<td>0.749</td>
<td>0.865</td>
<td>307.4</td>
</tr>
<tr>
<td>650</td>
<td>497.3</td>
<td>0.690</td>
<td>0.831</td>
<td>324.4</td>
</tr>
<tr>
<td>700</td>
<td>505.4</td>
<td>0.639</td>
<td>0.799</td>
<td>357.4</td>
</tr>
<tr>
<td>800</td>
<td>520.3</td>
<td>0.554</td>
<td>0.744</td>
<td>407.4</td>
</tr>
<tr>
<td>900</td>
<td>533.9</td>
<td>0.488</td>
<td>0.699</td>
<td>457.4</td>
</tr>
<tr>
<td>1000</td>
<td>546.3</td>
<td>0.435</td>
<td>0.659</td>
<td>507.4</td>
</tr>
<tr>
<td>Attribute</td>
<td>Control Ball Valve</td>
<td>Globe Valve</td>
<td>Advantage</td>
<td>Reason</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Flow Characteristics</td>
<td>Quadratic (with characterization)</td>
<td>Equal percent to design temp.</td>
<td>Globe</td>
<td>BAS controller expects flow from valve at low signal</td>
</tr>
<tr>
<td></td>
<td>Linear (full port)</td>
<td>Linear</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delayed opening / early close-off</td>
<td>Continuous from start</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rangeability</td>
<td>Fixed minimum flow results in 1. Low TDR at low Cv</td>
<td>50:1 = 2% steps (HON)</td>
<td>Globe</td>
<td>Small sizes are the most common applications and need high TDR</td>
</tr>
<tr>
<td>(turn-down ratio)</td>
<td>2. High TDR at high Cv</td>
<td>100:1 (Siemens claim)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum 25:1 (JCI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Differential Pressure</td>
<td>20 – 25 psid for characterized ports (plate distortion)</td>
<td>20 – 25 psid for quiet operation (cavitation at low flow)</td>
<td>— —</td>
<td>20+ psid is not typical of control valve applications</td>
</tr>
<tr>
<td>Close-Off Differential Pressure</td>
<td>High with low Torque actuators (water pressure aids sealing)</td>
<td>Inversely proportional to Cv, and proportional to actuator force</td>
<td>Control Ball</td>
<td>Globe is comparable in small sizes</td>
</tr>
<tr>
<td></td>
<td>Capable of dead-heading pumps*</td>
<td>Pressure balanced is high</td>
<td></td>
<td>PB more expensive</td>
</tr>
<tr>
<td>Seals</td>
<td>ANSI Class IV (< 0.01% Cv) @ A port</td>
<td>ANSI Class III w/ small metal seats</td>
<td>Control Ball</td>
<td>Less leakage reduces energy use with chilled water</td>
</tr>
<tr>
<td></td>
<td>(Does not apply to B port without seals)</td>
<td>ANSI Class IV with resilient seat and larger metal seated valves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trim</td>
<td>Plated brass ball and stem</td>
<td>Resilient material on metal seat</td>
<td>— —</td>
<td>Long term performance of ball valve in automatic control unknown</td>
</tr>
<tr>
<td>(internal construction)</td>
<td>Rubber and Teflon O-rings</td>
<td>Stainless steel plug on SS seat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam Ratings</td>
<td>Low pressure (full port only)</td>
<td>Low pressure</td>
<td>Globe</td>
<td>Greater versatility. Equal % flow available with globe</td>
</tr>
<tr>
<td></td>
<td>— —</td>
<td>High pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cv Ratings</td>
<td>Multiple Cv’s per valve size</td>
<td>Multiple Cvs @ 1/2” size</td>
<td>Ball</td>
<td>Lower installed cost with no loss of control capability</td>
</tr>
<tr>
<td>Line Size Piping</td>
<td>Line size piping with lower Cv</td>
<td>Reducers often needed > 1/2”</td>
<td>Ball</td>
<td>Lower installed cost with no loss of control capability</td>
</tr>
<tr>
<td>Pipe Sizes</td>
<td>1/2” – 3” threaded</td>
<td>1/2” – 3” threaded ANSI 150</td>
<td>Globe</td>
<td>Wider applications</td>
</tr>
<tr>
<td></td>
<td>4” – 6” ANSI 125 Flanged</td>
<td>2-1/2” – 6” ANSI 125 and 250 Flanged</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Way Body Styles</td>
<td>Combo mixing/diverting</td>
<td>Mixing models</td>
<td>Control Ball</td>
<td>Easier to select. Piping different mixing & diverting</td>
</tr>
<tr>
<td></td>
<td>B port seal required for tight close-off</td>
<td>Diverting models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Size</td>
<td>Low profile at large sizes</td>
<td>Large profile at large sizes</td>
<td>Control Ball</td>
<td>Depends on application</td>
</tr>
<tr>
<td></td>
<td>Relatively large in 1/2” pipe</td>
<td>Small size in 1/2” pipe</td>
<td>Globe</td>
<td></td>
</tr>
<tr>
<td>Control Inputs</td>
<td>Floating/2-position, modulating</td>
<td>Floating/2-position, modulating</td>
<td>— —</td>
<td>Depends on application</td>
</tr>
<tr>
<td></td>
<td>Some pneumatic actuators available</td>
<td>Large linear pneumatic installed base</td>
<td>Globe</td>
<td></td>
</tr>
<tr>
<td>Fall Safe Operation</td>
<td>N/O or N/C by actuator position</td>
<td>N/O or N/C up to 3”</td>
<td>Control Ball</td>
<td>Globe needs higher power actuators</td>
</tr>
<tr>
<td></td>
<td>Specify-in-place</td>
<td>Stay-in-place</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve Serviceability</td>
<td>Requires unions for valve access VBN stems replaceable</td>
<td>In-line serviceable</td>
<td>Globe</td>
<td>B.V. must be removed from piping</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE Preference</td>
<td>Growing with time</td>
<td>Well established</td>
<td>Globe</td>
<td>Familiar technology (habit)</td>
</tr>
<tr>
<td>Contractor Preference</td>
<td>Valve comes with actuator</td>
<td>Actuator selection separate</td>
<td>Control Ball</td>
<td>Easier to select</td>
</tr>
<tr>
<td>Actuator Selection</td>
<td>Match valve and damper DCAs</td>
<td>Requires linkage for DCAs</td>
<td>Control Ball</td>
<td>Added cost for globe valve</td>
</tr>
</tbody>
</table>

*Pumps require pressure cut-offs or supply-return differential pressure regulators to avoid pump seal damage and potential leakage that can result without flow-through. Unless used in end-of-line-service, control valves do not need to close off against full pump head.
Appendix B: NEMA Standard Classification Code for Enclosures

NEMA 1—General purpose. For indoor protection, where conditions are not unusually severe.

NEMA 2—Drip tight. Designed to exclude falling moisture or dirt. Particularly applicable to cooling rooms, laundries, etc., where condensation is prevalent. For indoor use.

NEMA 3—Weather Resistant (weatherproof). For outdoor use; designed to withstand all normal exposure to natural elements. Controls mounted on pullout racks for easy access. With rain hood and weather seals.

NEMA 4—Watertight. Withstands water pressure from 1 in. hose nozzle, 65 gallons per minute, from distance of not less than 10 ft for five minutes. Suitable for maritime applications, breweries, etc.

NEMA 5—Dust-tight. Equipped with dust-tight gaskets. Suitable for mills and other high-dust atmospheres.

NEMA 6—Submersible. For submerged operation under specified pressures and time.

NEMA 7—Hazardous Locations, National Electrical Code Class 1 (circuit breaks in air).

NEMA 8—Hazardous Locations, National Electrical Code Class 1 (circuit breaks immersed in oil).

NEMA 9—Hazardous Locations, National Electrical Code Class 2.

NEMA 11—Acid or Fume Resistant. Provides for immersion of enclosed equipment in oil.

NEMA 12—Industrial Use. Excludes oils, dust, moisture, to satisfy individual requirements.
Low power analog signals are commonly used for proportional control signal wiring in HVAC applications. Following are a series of best practices for the prevention of corruption of these signals due to electro-magnetic interference (“EMI”).

EMI is typically caused by coupling of the electro-magnetic field that surrounds all wires carrying current. It may also be caused by radio frequency sources such as “walkie talkies” using amplitude modulated signals. A strong EM field can induce electrical noise in wires up to 2 V in amplitude. The strongest coupling comes between closely spaced, parallel wires. Inductive and high power motor loads are some of the strongest sources of EMI, along with electronics lighting ballasts, dimmers, and variable frequency motor drives. More potential EMI sources in a building mean that greater attention needs to be paid to effective wiring practices.

All control wiring should consist of twisted pairs of wires, which resist interference better than straight, non-twisted conductors. Stranded conductors offer less resistance to current flow than solid wires, and are more flexible making them easier to install; however, care must be taken to ensure that all the conductors in the wire are properly installed and that “whiskers” do not short out any wiring connections.

Shielded Wiring

Control signals can be protected from EMI using shielded wire. The more continuous the shield, the more effective it is. Braided shield is commonly used for microphone cables because of its superior flexibility. HVAC wiring is fixed, does not require high flexibility during use, and is better served with lower cost cables using continuous foil shielding and a “drain wire”.

1. All signal wiring in hospitals should be shielded to prevent the potential for interference with medical equipment such as high power MRI and CT scanners.
2. All 0~10 Vdc control signals should be run in shielded cable. EMI noise can be interpreted as control signaling, depending on the noise suppression circuitry in the controlled equipment.
3. Long runs of wiring from 24 V power supply transformers should be shielded in heavy electrical noise environments to prevent EMI from coupling through the actuator’s power supply.
4. In typical commercial buildings, 2~10 Vdc signals do not require shielded wiring.
5. Current flow is much more difficult to induce in wiring than voltage, and current-based control signals usually do not require shielded cable except in heavy industrial applications.
 - If the terminal equipment only accepts voltage input, install a 500 ohm, ½ Watt (or larger), 1% resistor across the control input terminals to convert a 4~20 mA(dc) signal to 2~10 Vdc.
 - If multiple actuators are connected in parallel, install this resistor at the first actuator in the group.
 - Any standard resistor (“EIA”) value between 490 and 510 ohms is acceptable, and can be purchased at retail outlets that sell electronic components.
6. Floating, pulse-width modulated, and two-position actuators use switched 24 Vac control or power signals and so rarely require shielded wiring.

Wiring Techniques

1. No wiring should ever be assumed to be interference-proof. Never strap signal cables to other conductors or conduit, especially line voltage.
2. Never run signal wires in raceways or wiring troughs with other conductors. Keep signal wires at least a yard away from line voltage wiring. Higher voltage wiring requires greater separation.
3. When necessary, cross line voltage conductors with signal wiring at 90° (right angles), to minimize signal coupling.
4. Electromagnetic shielding is a static phenomenon; any current running through the shield will negate any protection the shield may have provided. Only ground (or “earth”) a shield drain wire at one point, preferably where the signal will be the weakest, for example: at the actuator.
 - Do not ground the secondary of the 24 V power supply in the control system. This will create a secondary current path and negate the protection of any shielding.
 - If there is a burner ignition system, power it with its own transformer and use an interface relay for isolation, if necessary.
 - Use relays with built-in coil arc suppression, such as a Honeywell R8229.
5. Insulate all exposed shielding and drain wire joins and splices so that they cannot contact electrical ground, especially junction boxes and conduit. Do not use the ground screw of a junction box as a tie point. Use a separate electrical ground wire if required for safety extra-low voltage wiring by local code.
6. Both rigid and flexible conduit are continuously grounded ("bonded") for electrical safety, and cannot function as a signal shield. Where local codes require mechanical protection for all wiring, shielded signal cable may be run inside conduit, following the practices listed above.

Additional References

Most of these wiring techniques were developed to protect the very low-strength signals in audio recording. The 20 mA current loop signal was originally used with teletype (“TWX”) equipment communicating over telephone lines and adapted for proportional analog control signaling in industrial process control. Further information and background theory can be found in:

2. Handbook for Sound Engineers, by Glen Ballou